R²=АВ²=(0+1)²+(-3-0)²=1+9=10 (это мы от икса и игрека точки А отняли икс и игрек точки В).
Уравнение окружности будет (х-0)²+(у+3)²=10 (в скобках - координаты точки А с противоположными знаками),
то есть х²+(у+3)²=10 - искомое уравнение окружности. Если точка М(6;-1) принадлежит окружности, то её координаты удовлетворяют уравнение окружности. Проверим 6²+(-1+3)²=36+4=40≠10, то есть М окружности не принадлежит (её координаты не подчиняются закону, зашифрованному в уравнении, а все точки окружности - подчиняются).
Уравнение окружности будет
(х-0)²+(у+3)²=10 (в скобках - координаты точки А с противоположными знаками),
то есть
х²+(у+3)²=10 - искомое уравнение окружности.
Если точка М(6;-1) принадлежит окружности, то её координаты удовлетворяют уравнение окружности. Проверим
6²+(-1+3)²=36+4=40≠10, то есть М окружности не принадлежит (её координаты не подчиняются закону, зашифрованному в уравнении, а все точки окружности - подчиняются).
ответ: х²+(у+3)²=10; не принадлежит.
D (0, 0, 0) DA | OY, DC | OX, DD1 | OZ
D (0, 0, 0), A1 (0, 1, 3), M (2, 0, 5/3)
Плоскость DA1M имеет вид ax + by + cz + d=0 если мы подставим координаты таких точек: D, A1, M, то получится так:
{a • 0 + b • 0 + c • 0 + d = 0
{a • 0 + b • 1 + c • 3 + d = 0
{a • 2 + b • 0 + c • (5/3) + d = 0
{d = 0
{b = - 3c
{a= - 5c/6
Поэтому отсюда вектор нормали имеет координаты: n(5/6, 3, -1)
Затем по формуле S (расстояние) от точки: D1(0, 0, 3) =:
l=|(5/6 • 0 + 3 • 0 - 3)|/sqrt ((5/6)^2 + 3^2 + (- 1)^2) = 18/sqrt(385).