Окружность, вписанная в треугольник ABC, площадь которого равна 66, касается средней линии, параллельной стороне BC. Известно что BC = 11. Найдите сторону AB ––––––––––– Обозначим среднюю линию КМ. По свойству средней линии КМ=ВС:2=11:2=5,5 ВКМС - описанный вокруг окружности четырехугольник. Суммы противоположных сторон описанного четырехугольника равны ( свойство). ⇒ КВ+МС=КМ+ВС КВ+МС=5,5+11=16,5 К и М делят АВ и АС пополам, ⇒ АВ=2₽•KB АC-2•MC АВ+АС=2•(КВ+МС)=33 Пусть АВ=х, тогда АС=33-х Периметр ∆ АВС=АВ+АС+ВС=33+11=44
Формула Герона для вычисления площади треугольника: ––––––––––––––––– S=√[р(р-АВ)(р-АС)(р-ВС)] где р - полупериметр
р=44:2=22⇒ –––––––––––––––––––––– 66=√[22•(22-х){22-(33-x)}(22-11) Выведем из-под корня 11: 6•11=11√[2•(22-x)(x-11)] Сократим обе части на 11 и возведем их в квадрат: 36=2•(22-х)•(x-11) ⇒ x²-33 x+260=0 Решив квадратное уравнение, получим два корня: х₁=20; х₂=13. Оба коря подходят. Для данного в приложении рисунка АВ=13 ( а АС=20). Если поменять местами В и С, АВ будет равно 20.
Окружность касается сторон AB и AD прямоугольника ABCD и пересекает DC в единственной точке F, а BC-в точке E.
Найти площадь AFCB, если AB=32, AD=40 и BE=1
————
АBCD- прямоугольник. ⇒
AFCB - прямоугольная трапеция. Площадь трапеции равна произведению полусуммы оснований на высоту.
S=0,5•(FC+AB)•BC
СF следует найти.
Проведем радиусы ОК и ОТ к АВ и АД соответственно.
АК=ОК=ОТ=ТА=R
Опустим из Е перпендикуляр ЕН на радиус ОК
КН=ВЕ=1⇒ НО=R-1
ЕН=ВК=АВ-R=32-R
По т.Пифагора из ∆ ОЕН
R²=(32-R)²+(R-1)²⇒
R²-66 R+1024=0 Решив квадратное уравнение, получим два корня:
R1=41; R2=25
Первый не подходит, т.к. больше, чем АВ, и будет касаться не АВ, а её продолжения.
R=ОЕ=25
Проведем ОМ перпендикулярно СD.
Основание СF=CM+MF
CM=BK=AB-R=7
MF=√(OF²-OM²)
OM=AD-R=40-25=15
MF=√(25²-15²)=20
CF=20+7=27
S=0,5•(27+32)•40=1180 ( ед. площади)
Известно что BC = 11. Найдите сторону AB
–––––––––––
Обозначим среднюю линию КМ.
По свойству средней линии КМ=ВС:2=11:2=5,5
ВКМС - описанный вокруг окружности четырехугольник.
Суммы противоположных сторон описанного четырехугольника равны ( свойство). ⇒
КВ+МС=КМ+ВС
КВ+МС=5,5+11=16,5
К и М делят АВ и АС пополам, ⇒
АВ=2₽•KB
АC-2•MC
АВ+АС=2•(КВ+МС)=33
Пусть АВ=х, тогда АС=33-х
Периметр ∆ АВС=АВ+АС+ВС=33+11=44
Формула Герона для вычисления площади треугольника:
–––––––––––––––––
S=√[р(р-АВ)(р-АС)(р-ВС)] где р - полупериметр
р=44:2=22⇒
––––––––––––––––––––––
66=√[22•(22-х){22-(33-x)}(22-11) Выведем из-под корня 11:
6•11=11√[2•(22-x)(x-11)]
Сократим обе части на 11 и возведем их в квадрат:
36=2•(22-х)•(x-11) ⇒
x²-33 x+260=0
Решив квадратное уравнение, получим два корня: х₁=20; х₂=13.
Оба коря подходят.
Для данного в приложении рисунка АВ=13 ( а АС=20). Если поменять местами В и С, АВ будет равно 20.