Треугольник АВС - р/б с углом при основании = 60 град. Из вершины треугольника (т.В) проведена высота ВН на основание треугольника АС. Найти высоту ВН, если боковая сторона АВ=ВС=6 см.
Т.к. АВС р/б, то высота проведенная из вершины является и биссектрисой и медианой.
Угол В= 180-60-60=60 см, значит треугольник АВС - равносторонний, тогда угол АВН=СВН=30 град. акже, если АВС - р/с, то АВ=ВС=СА=6см. Тогда, т.к. ВН - медиана, то АН=6/2=3 см. Тогда ВН по т Пиф: ВН=√(6*6-3*3)=√(36-9)=√27=√(9*3)=3√3 см
Треугольник АВС - р/б с углом при основании = 60 град. Из вершины треугольника (т.В) проведена высота ВН на основание треугольника АС. Найти высоту ВН, если боковая сторона АВ=ВС=6 см.
Т.к. АВС р/б, то высота проведенная из вершины является и биссектрисой и медианой.
Угол В= 180-60-60=60 см, значит треугольник АВС - равносторонний, тогда угол АВН=СВН=30 град. акже, если АВС - р/с, то АВ=ВС=СА=6см. Тогда, т.к. ВН - медиана, то АН=6/2=3 см. Тогда ВН по т Пиф: ВН=√(6*6-3*3)=√(36-9)=√27=√(9*3)=3√3 см
ответ: ВН=3√3 см.
Рисунок во вложении..................................... ©
Найдите углы A и B треугольника ABC, если AB=12 см, BC=6√6 см, угол C= 45°.
ответ: 60° , 75° или 120° , 15° .
Объяснение:
По теореме синусов : BC / sin(∠A) =AB / sin(∠C ) ⇔
6√6/sin(∠A)=12/sin45°⇔sin(∠A) =6√6*sin45°/12=6√6 *(√2/2) / 12 = 3 /2 ⇒
∠A= 60° или ∠A= 120° . Оба верны ∠A > ∠C , т.к. BC > AB
( в треугольнике против большой стороны лежит большой угол )
* * * BC > AB : BC = 6√6 > 6√4 = 12 = AB * * *
∠B = 180° - (∠A+√C) → ∠B = 75° или ∠B = 15° см. лишнее приложение