Объяснение:
Дано: АВСD - ромб, АС=18 см, ВD=26 см. ∠ОАD=60°.
Найти Р(АСВD), Р(АОD), ∠А, ∠В, ∠С, ∠D.
Диагонали ромба в точке пересечения делятся пополам, поэтому АО=ОС=18:2=9 см; ВО=ОD=26:2=13 см.
Найдем сторону ромба АD из ΔАОD-прямоугольного;
∠АDО=90-∠ОАD=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°; значит, АD=2АО=9*2=18 см.
AD=AB=BC=CD=18 cм.
Р(ABCD)=18*4=72 cм.
Р(АОD)=18+9+13=40 см.
Найдем углы ромба
Диагональ делит угол ромба пополам, поэтому ∠D=2∠ADO=30*2=60°
Противоположные углы ромба равны, поэтому ∠В=∠D=60°
Сумма углов ромба, прилежащих к одной стороне, равна 180°, поэтому ∠А=180-60=120°.∠С=∠А=120° как противолежащие углы ромба.
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
Объяснение:
Дано: АВСD - ромб, АС=18 см, ВD=26 см. ∠ОАD=60°.
Найти Р(АСВD), Р(АОD), ∠А, ∠В, ∠С, ∠D.
Диагонали ромба в точке пересечения делятся пополам, поэтому АО=ОС=18:2=9 см; ВО=ОD=26:2=13 см.
Найдем сторону ромба АD из ΔАОD-прямоугольного;
∠АDО=90-∠ОАD=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°; значит, АD=2АО=9*2=18 см.
AD=AB=BC=CD=18 cм.
Р(ABCD)=18*4=72 cм.
Р(АОD)=18+9+13=40 см.
Найдем углы ромба
Диагональ делит угол ромба пополам, поэтому ∠D=2∠ADO=30*2=60°
Противоположные углы ромба равны, поэтому ∠В=∠D=60°
Сумма углов ромба, прилежащих к одной стороне, равна 180°, поэтому ∠А=180-60=120°.∠С=∠А=120° как противолежащие углы ромба.
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см