Вычисли меньшую сторону и площадь прямоугольника, если его большая сторона равна 10,5 см, диагональ равна 73–√ см и образует с меньшей стороной угол 60 градусов.
Меньшая сторона =
−−−−−√ см.
Площадь прямоугольника равна
−−−−−−−√ см2.
(Если необходимо, ответы округли до сотых.)
Вариант для любителей тригонометрии
Объяснение:
Дан треугольник АВС с основанием АС и высотой h, проведенной к основанию. Стороны треугольника
АВ = "с", ВС = "а".
Пусть основание делится высотой на отрезки, равные x и y, считая от вершины А. Тогда из прямоугольных треугольников, на которые высота делит исходный треугольник, имеем:
x = c*cosa. y = a*cos2a.
c = h/sina. a = h/sin2a. cos2a = h/а. =>
x = h*cosa/sina. y = h*cos2a/sin2a.
x - y = h(cosa/sina - cos2a/sin2a).
Sin2a = 2sina·cosa. (формула двойного аргумента)
Cos2a = 1 - 2sin²а. (формула двойного аргумента) Тогда
cosa/sina - cos2a/sin2a =
(cosa·sin2a - cos2a·sina)/(sina·sin2a). =>
sina(2cos²а - cos2a)/(sina·cos2a)=(2cos²а - cos2a)/(cos2a).
(2cos²а - 1 + 2sin²а)/(cos2a) =
(2cos²а + 2sin²а - 1)/(cos2a) = 1/cos2a. =>
x - y = h/cos2a. cos2a = h/а. =>
x - y = h/(h/а) = а.
Что и требовалось доказать.
Доказательство в объяснении.
Объяснение:
Дан треугольник АВС с основанием АС и высотой h, проведенной к основанию. Стороны треугольника
АВ = "с", ВС = "а".
Пусть основание делится высотой на отрезки, равные x и y, считая от вершины А.
Тогда из прямоугольных треугольников, на которые высота делит исходный треугольник, имеем:
x = c*cosa. y = a*cos2a.
c = h/sina. a = h/sin2a. cos2a = h/а. =>
x = h*cosa/sina. y = h*cos2a/sin2a.
x - y = h(cosa/sina - cos2a/sin2a).
Sin2a = 2sina·cosa. (формула двойного аргумента)
Cos2a = 1 - 2sin²а. (формула двойного аргумента) Тогда
cosa/sina - cos2a/sin2a =
(cosa·sin2a - cos2a·sina)/(sina·sin2a). =>
sina(2cos²а - cos2a)/(sina·cos2a)=(2cos²а - cos2a)/(cos2a).
(2cos²а - 1 + 2sin²а)/(cos2a) =
(2cos²а + 2sin²а - 1)/(cos2a) = 1/cos2a. =>
x - y = h/cos2a.
cos2a = h/а. =>
x - y = h/(h/а) = а.
Что и требовалось доказать.