Вычисли меньшую сторону и площадь прямоугольника, если его большая сторона равна 13,5 мм, диагональ равна 93–√ мм и образует с меньшей стороной угол 60 градусов. Меньшая сторона =
−−−−−−−√ мм.
Площадь прямоугольника равна
−−−−−−−−√ мм2.
(Если необходимо, ответы округли до сотых.)
Стороны ромба равны по 24√3/4 =6√3 см. Площадь его находим по формуле а²*sin 120=36*3*√3/2 = 54√3.
Высоты боковых граней равны. Их можно найти из ΔSOM. SM=OM/cos 60°.
OM - половина высоты ромба,DK= DC* sin∠C= 6√3*√3/2 =9 см. ОМ= 4,5 см.
SM= 4,5/(/2) = 9 см.
S(бок) =1/2*P(осн) * SM = 1/2*24√3*9 =108√3.
Полная поверхность равна 108√3+54√3=162√3. Значит а=162.
70
Объяснение:
скорее всего ты ошибся(-лась) и там четырех угольник АВОС.
И так, сначала чертим окружность с центром в точке О. проводим к нет две касательные из точки А (т.к. касательные выходят из одной точки). проводим два радиуса ОВ и ОС, и биссектрису угла О (скажем так, в условии про биссектрису не пишем) ОА. Получим четырехугольник АОВС. так как прямая ОА делит его на два равных треугольника, нам нужно найти одну сторону (либо СА, либо ВА). я искала через треугольник АОВ. нам известен катет и гепотенуза, второй катет ищем через теорему Пифагора ( квадрат гипотенузы равен сумме квадратов катетов). в нашем случае: чтобы найти неизвестный катет нужно от квадрата гнпотенузы отнять квадрат известного катета. далее находим периметр. периметр это сумма длин сторон. значит нам нужно сложить ОС, ОВ, ВА и АС. после сложения получаем 70.
P.S: если здесь я объяснила не понятно, то я прикрепила фото с решением (сорри за почерк)