Вычисли меньшую сторону и площадь прямоугольника, если его большая сторона равна 19,5 мм, диагональ равна 13√3 мм и образует с меньшей стороной угол 60 градусов.
трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, ВС=18, АД=50, центр О-пересечение биссектрис углов трапеции, ВМ-прямая проходящая через вершину , центр О на АД =биссектриса угла В, угол АВМ=уголМВС=1/2уголВ, уголМВС=уголАМВ как внутренние разносторонние=уголАВМ, треугольник АВМ равнобедренный, АВ=АМ,
в трапецию можно вписать окружность если сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, 18+50=2АВ, АВ=СД=34=АМ, проводим высоты ВН и СК на АД, НВСК-прямоугольник ВС=НК=18, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(50-18)/2=16, треугольник АВН, ВН-высота трапеции и треугольника АВМ=корень(АВ в квадрате-АН в квадрате)=корень(1156-256)=30,
Объем призмы находят произведением ее высоты на площадь основания. V=SH Высота 10, следовательно, площадь основания S=V:H=300:10=30 см² Площадь прямоугольного треугольника равна половине произведения его катетов: S=12*x:2=30 см² х=2S:12=60:12=5 Известны 2 катета прямоугольного треугольника. Гипотенузу можно найти и без т.Пифагора - отношение сторон этого треугольника из так называемых троек Пифагора 5:12:13 ( но можно и вычислить гипотенузу, она равна 13) Периметр основания Р=5+12+13=30 см Площадь боковой поверхности прямой призмы - произведение периметра основания на высоту S бок=30*10=300 см²
треугольникАВС, уголА=78, ВД и СЕ-высоты, треугольник АСЕ прямоугольный, уголАСЕ=90-уголА=90-78=12, треугольник ДОС прямоугольный, уголДОС=90-уголАСЕ=90-12=78, уголДОЕ=180-уголДОС=180-78=102
трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, ВС=18, АД=50, центр О-пересечение биссектрис углов трапеции, ВМ-прямая проходящая через вершину , центр О на АД =биссектриса угла В, угол АВМ=уголМВС=1/2уголВ, уголМВС=уголАМВ как внутренние разносторонние=уголАВМ, треугольник АВМ равнобедренный, АВ=АМ,
в трапецию можно вписать окружность если сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, 18+50=2АВ, АВ=СД=34=АМ, проводим высоты ВН и СК на АД, НВСК-прямоугольник ВС=НК=18, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(50-18)/2=16, треугольник АВН, ВН-высота трапеции и треугольника АВМ=корень(АВ в квадрате-АН в квадрате)=корень(1156-256)=30,
площадьАВСД=1/2*(ВС+АД)*ВН=1/2*(18+50)*30=1020
площадь АВМ=1/2АМ*ВН=1/2*34*30=510
площадьАВМ/площадьАВСД=510/1020=1/2
V=SH
Высота 10, следовательно, площадь основания
S=V:H=300:10=30 см²
Площадь прямоугольного треугольника равна половине произведения его катетов:
S=12*x:2=30 см²
х=2S:12=60:12=5
Известны 2 катета прямоугольного треугольника.
Гипотенузу можно найти и без т.Пифагора - отношение сторон этого треугольника из так называемых троек Пифагора 5:12:13 ( но можно и вычислить гипотенузу, она равна 13)
Периметр основания
Р=5+12+13=30 см
Площадь боковой поверхности прямой призмы - произведение периметра основания на высоту
S бок=30*10=300 см²