Вычисли неизвестную сторону четырёхугольника, если в него вписана окружность. https://ykl-res.azureedge.net/57472e23-0b10-45c4-8197-cc05dd301445/neregulars%20cetrsturis%20ar%20burtiem.JPG FG= 3 м;
Любая геометрическая задача сводится к рассмотрению треугольника, либо пары треугольников, так вот: рассмотрим треугольник АСB, он равнобедренный, т.к., угол С = 90*, а угол А = 45*, чтобы найти угол B= 180-(90+45) = 45*, углы при основании равны, треугольник равнобедренный по 1 свойству. Так же мы знаем, что в равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой, по 4 свойству, соответственно, медиана - это линия, которая проведена из вершины к середине противоположной стороны. Зная длину стороны АB = 4, мы можем вычислить AB=AH+HB, 4=2+2, значит отрезок HB=2 см. Зная, что от является катетом равнобедренного треугольника, по 1 свойству, т.к., у нас имеется угол в 90* и один угол в 45*, значит угол B=45*, мы получаем, что CH=HB=2см.
Ниже рисунок.
Он прямоугольный (BH - высота)
Найдём ∠BAH = 90° - ∠ABH = 90° - 40° = 50°
∠ABC = ∠ABH + ∠HBC = 40° + 10° = 50°
∠BAH = ∠ABC = 50° ⇒ ΔABC - равнобедренный.
Угол ∠BCH из ΔBCH = 90° - ∠HBC = 90° - 10° = 80°
CD - высота, проведённая к AB
AB в ΔABC является основанием ⇒ CD не только высота, но и биссектриса ⇒ ∠BCD = ∠DCA = 80°/2 = 40°
Рассмотрим ΔBOC.
∠BCD = ∠BCO = 40°
∠HBC = ∠OBC = 10°
Сумма углов треугольника равна 180° ⇒ ∠BOC + ∠OBC + ∠BCO = 180°
∠BOC + 40° + 10° = 180°
∠BOC = 180° - 50°
∠BOC = 130°