Сумма углов трапеции как четырехугольника равна 360 градусам(180*(n-2),где n-число сторон n-угольника).Так как трапеция равнобедренная,то углы при основании равны,а значит равны и два других угла.Пусть величина одного из углов,например,BAC равна x,тогда величина другого угла,например,ABC равна x+60. Так как сумма всех углов равна 360, то сумма двух из них равна 180. Получаем уравнение x+x+60=180, откуда x=60. Значит величина одного угла равна 60, а другого соответственно 120, то есть BAC=ADC=60, а ABC=BCD=120.
По условию ВМ = АМ →
∆ АВМ – равнобедренный
угол АВМ = угол ВАМ = х
2) угол АМС = угол ВАМ + угол АВМ – как внешний угол
Поэтому угол АМС = х + х = 2х
3) По условию АМ = АС →
∆ МАС – равнобедренный
угол АМС = угол АСМ = 2х
3) ∆ АВС – равнобедренный
Соответственно, угол ВАС = угол АСВ = 2х
Сумма всех углов в любом треугольнике всегда равна 180° :
угол ВАС + угол АВС + угол АСВ = 180°
2х + 2х + х = 180°
5х = 180°
х = 180°/5 = 36°
Значит, угол АВС = 36°
угол ВАС = угол АСВ = 2х = 2 × 36° = 72°
Также можно заметить, что
угол МАС = угол ВАС - угол ВАМ = 2х - х = х
Значит, АМ – биссектриса угла ВАС
ОТВЕТ: 72° ; 72° ; 36°