Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,∠BOC=80° и точка О лежит вне трапеции.
Объяснение:
Вписанная в окружность трапеция является равнобедренной.
Значит АВ=CD стягивают равные дуги → ∪AB=∪CD
∠BOC=80° -центральный → ∪ВС=80°
∠AOD=100°--центральный → ∪АВD=100° ⇒ ∪AB=∪CD= =10°.
∠BAD вписанный и опирается на дугу ∪BCD=∪BC+∪CD=80°+10°=90°.
∠BAD=1/2*90°=45°. Значит ∠СDA=45° и ∠СВA=45° (углы при основании равны )
Сумма углов 4-х угольника 360°. Поэтому ∠АВС=∠ВСD= =135°
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,∠BOC=80° и точка О лежит вне трапеции.
Объяснение:
Вписанная в окружность трапеция является равнобедренной.
Значит АВ=CD стягивают равные дуги → ∪AB=∪CD
∠BOC=80° -центральный → ∪ВС=80°
∠AOD=100°--центральный → ∪АВD=100° ⇒ ∪AB=∪CD= =10°.
∠BAD вписанный и опирается на дугу ∪BCD=∪BC+∪CD=80°+10°=90°.
∠BAD=1/2*90°=45°. Значит ∠СDA=45° и ∠СВA=45° (углы при основании равны )
Сумма углов 4-х угольника 360°. Поэтому ∠АВС=∠ВСD= =135°