Середина боковой стороны лежит на средней линии треугольника, параллельной основанию. вершина треугольника удалена от основания в два раза дальше, чем средняя линия, значит высота, опушенная на основания h=2·9=18 см. высота, проведённая к основанию равнобедренного треугольника, является его медианой, значит точка пересечения медиан лежит на высоте треугольника. точка пересечения медиан делит каждую медиану на отрезки в отношении 2: 1 считая от вершины, значит искомое расстояние - это треть от всей высоты, то есть 18/3=6 см - это ответ.
20 см
Объяснение:
1) Пусть дана трапеция АВСD (∠А = 90°; ∠В = 90°), с основаниями AD и ВС и боковыми сторонами АВ и СD, где CD - большая боковая сторона.
2) Так как в трапецию можно вписать окружность, то суммы длин противоположных её сторон равны, то есть:
ВС + AD = AB + CD = 60 : 2 = 30 см
3) Так как трапеция прямоугольная, то длина её меньшей боковой стороны АВ равна диаметру окружности, вписанной в трапецию
АВ = 2 · R = 2 · 5 = 10 cм
4) Зная АВ, находим СD:
AB + CD = 30
10 + CD = 30
CD = 30 - 10 = 20 см
ответ: 20 см