Вычисли площадь боковой и полной поверхностей правильной усечённой четырёхугольной пирамиды, если стороны оснований равны 5 дм и 15 дм, а апофема равна 12 дм. Площадь боковой поверхности равна __ дм².
ответ:Если два отрезка пересекаются,то это выглядит так
Х
При пересечении отрезков получаются четыре вертикальных угла,противоположные углы равны между собой
А тут ещё речь идёт о треугольниках,и из условия известно,что отрезки пересекаются в точке О,которая является серединой каждого из них
Из условия задачи следует,что
ВО=ОК
АО=ОМ
И углы между сторонами равны,как вертикальные
Треугольники равны по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
ответ:Если два отрезка пересекаются,то это выглядит так
Х
При пересечении отрезков получаются четыре вертикальных угла,противоположные углы равны между собой
А тут ещё речь идёт о треугольниках,и из условия известно,что отрезки пересекаются в точке О,которая является серединой каждого из них
Из условия задачи следует,что
ВО=ОК
АО=ОМ
И углы между сторонами равны,как вертикальные
Треугольники равны по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Объяснение:
1. Дано: АО=OD
BO=OC
Рассмотрим треугольники ABO, DCO:
AO=OD(по условию)
BO=OC(по условию)
Угол AOB = углу COD(вертикальные)(треугольники равны по 1 признаку)
2. Дано: AD=BC
Угол CBA = углу CDA
Угол BCD = углу BAD
Рассмотрим треугольники ABC, CDA:
AD=BC(по условию)
Угол CBA = углу CDA( по условию)
Угол BCD = углу BAD(по условию)(треугольники равны по 2 признаку)
3. Дано: медиана BM(хз, что ещё дано)
Рассмотрим треугольники ABM,CBM:
AM=MC( как желанные медианой)
BM общая
Угол М=90°(треугольники равны по 1 признаку)
Объяснение: