Вычисли площади красного и незакрашенного сегментов, если радиус круга равен 8 дм, и меньший центральный угол равен 90°. π≈3 ответ: sкрасного сегмента= дм2 sбелого сегмента= дм2
1) Ð- таинственный символ, ванговать, к сожалению, не умею. 2) Теорема Пифагора:
отсюда
3) 1-ая картинка 4) 2-ая картинка. Если в задаче подразумевалось симметричное расположение точек относительно прямых (т.е. "по разные стороны" = на равном расстоянии),то примером такой фигуры является ромб. На нем очень удобно доказывать подобные неравенства. Рассматривая 4 прямоуг. треугольника, мы помним, что сумма катетов всегда больше гипотенузы. Отсюда и вытекает 2(МР+КТ) >МК+КР+РТ+ТМ 5) Сумма 2-ух сторон треугольника всегда больше 3-ей. 1-ый треугольник существовать не может, второй-может
1) с=√(а²+b²) = √(16+9) =5см.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
2) b=√(с²-а²) =√(169-144) =5см.
Sinα = a/c = 12/13 ≈ 0,923. α ≈ 67°.
Sinβ = b/c = 5/13 ≈ 0,385. β ≈ 23°.
3) α=30°, значит а=0,5·с = 20см (катет a против угла 30°).
b = √(c²-a²) = √(40²-20²) = 20√3.
β = 60°. (по сумме острых углов прямоугольного треугольника).
4) α=45°, значит β = 45°. а=b= 4см, с= √(а²+b²) = √32 = 4√2см.
5) α=60°, значит β = 30°. (по сумме острых углов прямоугольного треугольника).
с=2·b = 10см (катет b против угла 30°).
а = √(с²-b²)= √75 = 5√3см.
6) а=√(с²-b²)=√(100-36) = √64 = 8дм.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
2) Теорема Пифагора:
отсюда
3) 1-ая картинка
4) 2-ая картинка. Если в задаче подразумевалось симметричное расположение точек относительно прямых (т.е. "по разные стороны" = на равном расстоянии),то примером такой фигуры является ромб. На нем очень удобно доказывать подобные неравенства. Рассматривая 4 прямоуг. треугольника, мы помним, что сумма катетов всегда больше гипотенузы. Отсюда и вытекает 2(МР+КТ) >МК+КР+РТ+ТМ
5) Сумма 2-ух сторон треугольника всегда больше 3-ей.
1-ый треугольник существовать не может, второй-может