6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
Объяснение:
6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
R=a6
r=a4/2
a6=a4/2=(4√2)/2=2√2
P4=4*a4=4*4√2=16√2
S4=(a4)²=(4√2)²=16*2=32 кв.ед.
)
\vec{AB}-\vec{DC}+\vec{BC} =\vec{AB}+\vec{BC}+\vec{CD} =\vec{AD}AB−DC+BC=AB+BC+CD=AD
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
2)
\begin{gathered}\vec{AD}-\vec{BA}+\vec{DB}+\vec{DC}=\vec{AD}+\vec{DB}-\vec{BA}+\vec{DC} ==\vec{AB}+\vec{AB}+\vec{DC} =2\vec{AB}+\vec{AB}=3\vec{AB}\end{gathered}AD−BA+DB+DC=AD+DB−BA+DC==AB+AB+DC=2AB+AB=3AB
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
3)
\begin{gathered}\vec{AB}+\vec{CA}-\vec{DA}=\vec{DC}+\vec{CA}+\vec{AD}==\vec{AD}+\vec{DC}+\vec{CA}=\vec{AA} =0\end{gathered}AB+CA−DA=DC+CA+AD==AD+DC+CA=AA=0
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
ответы:
1)\vec{AD};\; 2)\,3\vec{AB};\; 3)\,0.1)AD;2)3AB;3)0.