а) пусть х=длина диагонали, тогда х-4=длина одной стороны и х-8=длина другой стороны.
так как диагональ прямоугольника разбивает его на два равных прямоугольных треугольника, то получаем что диагональ прямоугольника-это гипотенуза прямоугольного треугольника, а две стороны прямоугольника-это катеты прямоугольного треугольника.
по теореме пифагора получаем
(x-8)^2+(x-4)^2=x^2
x^2-24x+80=0
(x-20)(x-4)=0
откуда x=20 и x=4. x=4 не подходит так как тогда длина одной стороны равна 0, а другой отрицательна. значит длина диагонали равна 20 а стороны 16 и 12 соответственною
Треугольник ABC; AB=9; BC=11; BO=7. АО=ОС(медиана делит основание на 2 равные части). Чтобы найти основание, мы продолжаем медиану на 7 см и ставим точку Д(ВО=ОД=7см); соединяем со всеми вершинами и получаем ромб/параллелограм. Параллелограм состоит из 4-её треугольников, попарно одинаковых; /\АВО=/\СОД(АО=ОС, ВО=ОД и вертикальные углы при точке О); ВД=7+7=14см Воспользуемся формулой Герона: S=\/p(p-a)(p-b)(p-c), где p=(a+b+c):2 Треугольник ВСД: P=(11+9+14):2=17см S=\/17*8**6*3= \/17*4*2*3*2*3=12\/17cm^2
а) пусть х=длина диагонали, тогда х-4=длина одной стороны и х-8=длина другой стороны.
так как диагональ прямоугольника разбивает его на два равных прямоугольных треугольника, то получаем что диагональ прямоугольника-это гипотенуза прямоугольного треугольника, а две стороны прямоугольника-это катеты прямоугольного треугольника.
по теореме пифагора получаем
(x-8)^2+(x-4)^2=x^2
x^2-24x+80=0
(x-20)(x-4)=0
откуда x=20 и x=4. x=4 не подходит так как тогда длина одной стороны равна 0, а другой отрицательна. значит длина диагонали равна 20 а стороны 16 и 12 соответственною
значит площадь равна 16см*12см=192см^2
б)пусть длина стороны квадрата=х тогда 4х=192
значит длина стороны квадрата равна 48см
и тогда площадь квадрата равна (48см)^2=2304см^2