условие сформулировано так, что могут быть 2 ответа - в зависимости от того, какая из вершин АС - А или С является вершиной прямого угла треугольника АВС. Предположим, что это - С.
Тогда треугольник АВС "египетский", стороны (6,8,10). (это я не навязчиво нашел второй катет АВС, ВС = 6)
Угол между плоскостью b и плоскостью АВС - это угол между катетом ВС = 6 и его проекцией на b. Обозначим проекцию точки В на b как М. Тогда треугольник ВМС прямоугольный, ВС = 6 и угол МСВ = 30 градусов, откуда ВМ = 3. (это ответ)
В том случае, если вершиной прямого угла является А, принцип решения тот же, но - еще проще, поскольку нам нет необходимости искать третью сторону АВС, Поскольку АВ - тоже катет, и искомый угол как раз между ним и b, то есть расстояние в этом случае равно АВ/2 = 5. (это другой ответ, посмотрите, какое из условий правильное, и выбирайте. Но задачи эти разные, и как мне кажется, правильное условие - первое.)
1. поскольку A1D1 II CВ, то можно искать угол между АСВ1 и СВ.
2. Поскольку точка С принадлежит плоскости АСВ1, то для построения проекции СВ на АСВ1 достаточно построить проекцию точки В на эту плоскость.
3. Диагональное сечение DBB1D1 перпендикулярно прямой АС, поскольку в нем есть 2 прямых, перпендикулярных АС - это BD и ВВ1. Поэтому плоскости DBB1D1 и АСВ1 перпедикулярны (АСВ1 содержит прямую, пепендикулярную другой плоскости DBB1D1). Отсюда следует, что если в плоскости DBB1D1 выделить треугольник ВВ1О, где О - середина АС (центр квадрата АВСD), то высота ВМ, проведенная к гипотенузе ВО, и есть перпендикуляр к плоскости АВС1. В самом деле, ВМ перпендикулярно В1О и АС (напомню - АС перпендикулярно плоскости DBB1D1), то есть 2 прямым в плоскости АСВ1.
4. Таким образом, точка М - проекция В на ACB1, и синус искомого угла равен ВМ/ВС. Пусть ВС = 1 (примем сторону куба за единицу длины). Найдем ВМ.
5. Для этого вернемся к треугольнику В1ВО. ВВ1 = 1; ВО = 1/корень(2); вычисляем В1О = корень(1 + 1/2) = корень(3/2);
ВМ*В1О = ВВ1*ВО; (это просто площадь тр-ка, записанная ВМ = 1*(1/корень(2))/(корень(3/2)) = 1/корень(3);
условие сформулировано так, что могут быть 2 ответа - в зависимости от того, какая из вершин АС - А или С является вершиной прямого угла треугольника АВС. Предположим, что это - С.
Тогда треугольник АВС "египетский", стороны (6,8,10). (это я не навязчиво нашел второй катет АВС, ВС = 6)
Угол между плоскостью b и плоскостью АВС - это угол между катетом ВС = 6 и его проекцией на b. Обозначим проекцию точки В на b как М. Тогда треугольник ВМС прямоугольный, ВС = 6 и угол МСВ = 30 градусов, откуда ВМ = 3. (это ответ)
В том случае, если вершиной прямого угла является А, принцип решения тот же, но - еще проще, поскольку нам нет необходимости искать третью сторону АВС, Поскольку АВ - тоже катет, и искомый угол как раз между ним и b, то есть расстояние в этом случае равно АВ/2 = 5. (это другой ответ, посмотрите, какое из условий правильное, и выбирайте. Но задачи эти разные, и как мне кажется, правильное условие - первое.)
1. поскольку A1D1 II CВ, то можно искать угол между АСВ1 и СВ.
2. Поскольку точка С принадлежит плоскости АСВ1, то для построения проекции СВ на АСВ1 достаточно построить проекцию точки В на эту плоскость.
3. Диагональное сечение DBB1D1 перпендикулярно прямой АС, поскольку в нем есть 2 прямых, перпендикулярных АС - это BD и ВВ1. Поэтому плоскости DBB1D1 и АСВ1 перпедикулярны (АСВ1 содержит прямую, пепендикулярную другой плоскости DBB1D1). Отсюда следует, что если в плоскости DBB1D1 выделить треугольник ВВ1О, где О - середина АС (центр квадрата АВСD), то высота ВМ, проведенная к гипотенузе ВО, и есть перпендикуляр к плоскости АВС1. В самом деле, ВМ перпендикулярно В1О и АС (напомню - АС перпендикулярно плоскости DBB1D1), то есть 2 прямым в плоскости АСВ1.
4. Таким образом, точка М - проекция В на ACB1, и синус искомого угла равен ВМ/ВС. Пусть ВС = 1 (примем сторону куба за единицу длины). Найдем ВМ.
5. Для этого вернемся к треугольнику В1ВО. ВВ1 = 1; ВО = 1/корень(2); вычисляем В1О = корень(1 + 1/2) = корень(3/2);
ВМ*В1О = ВВ1*ВО; (это просто площадь тр-ка, записанная ВМ = 1*(1/корень(2))/(корень(3/2)) = 1/корень(3);
это ответ.