Дано: (O; r) треугольник ABC А, В, С принадлежит (O; r) дуги относятся, как 2:9:25 Найти: больший угол ABC
Решение: 1. Пусть х - это коэффициент пропорциональности, тогда дуга АВ - это 2х, дуга ВС - 9х, дуга АС - 25х (здесь можно обозначать как угодно, ответ не изменится)
дуга АВ + дуга ВС + дуга АС = 360° 2х + 9х + 25х = 360 36х = 360 х = 360 / 60 х = 10
2. Больше всех дуга АС (25>9 и 25>2) Дуга АС = 25 × 10 = 250°
1)дано: циліндр, авсd- переріз, вd-діагональ, r=ао=од=6 см, кут вdа=60 градусівзнайти: ав, s abcdз трикутника вdа ( кут ваd= 90 градусів)tg60= ab/ad ad=ao+od=12 смab=ad tg60ab=12 * корінь з 3осьовим перерізом є прямокутник, отжеs=ab*ads=12коренів з 3 * 12=144 корінь з 3 (см2)
2)осьовим перерізом є прямокутник, а прямокутник, у якого діагоналі перпендикулярні - це квадрат, отже висота = 2r=10 см3) з трикутника аво во=r=5см, к-середина ав, ко=4см,з трикутника вок (кут вко = 90 градусів)за т.піфагора вк= корінь квадратний 25-16= 3 смав=2вк=6 смас=h=8 cмs= 8*6=48 (cм2)4) ао=r=5см, ka і кв - твірні, ka=13 cм , sakb-? з трикутника коа (кут коа=90 градусів)ко=корінь з 169-25=корінь з 144=12s=ав*ко/2 ав=ao+ob=10s=10*12/2=60 (см2)
(O; r)
треугольник ABC
А, В, С принадлежит (O; r)
дуги относятся, как 2:9:25
Найти: больший угол ABC
Решение:
1. Пусть х - это коэффициент пропорциональности, тогда дуга АВ - это 2х, дуга ВС - 9х, дуга АС - 25х (здесь можно обозначать как угодно, ответ не изменится)
дуга АВ + дуга ВС + дуга АС = 360°
2х + 9х + 25х = 360
36х = 360
х = 360 / 60
х = 10
2. Больше всех дуга АС (25>9 и 25>2)
Дуга АС = 25 × 10 = 250°
3. угол АВС - вписанный
=> угол АВС = 1/2 × дуга АС
угол АВС = 1/2 × 250 = 125°.
Этот угол будет наибольшим в треугольнике, потому что:
1. Он тупой; 2. Он упирается на большую дугу.
=> наибольший угол равен 125°
ответ: наибольший угол АВС = 125°