2) Т.к. это равнобедренный треугольник, значит у него боковые стороны равны, а высота проведенная к основанию является медианой. Далее рассмотри образовавшийся прямоугольный треугольник в котором 1 из катетов 21 см, а гипотенуза 29 см, известно что если катет лежащий против угла зо градусов равен половине гипотенузы, значит катет, который также является половинной основания равен 29:2=14,5, а основания равно двум эти катетам то есть 29 см, можем сделать вывод что треугольник еще и равностронний
Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².