1) В первом условии получается, что дан равносторонний треугольник. У такого треугольника все углы по 60 градусов. Значит, cosA = cos 60° = 0,5. 2) Во втором случае дан равнобедренный треугольник. В нем угол А будет при основании, а значит он острый, поэтому тангенс угла будет числом положительным. Теперь по теореме косинусов имеем (достаточно нарисовать, чтобы понять обозначения): BC² = AC² + AB² - 2*AC*AB*cosA 169 = 169 + 100 - 260*cosA 260*cosA = 100 cosA = 100/260 = 5/13 По основному тригонометрическому тождеству имеем: sin²A + cos²A = 1 откуда sinA = √(1 - cos²A) = √(1 - (25/169)) = 12/13 И находим тангенс: tgA = sinA/cosA = 12/13 ÷ 5/13 = 12/5 = 2,4
Как найти основание равнобедренной трапецииПохоже обстоят дела с равнобедренной трапецией. Под этим понятием понимают такую трапецию, чьи боковые стороны равны. Эта фигура абсолютно симметрична относительно центра, потому пары углов в ней равны. Это довольно удобно, поскольку, обладая сведениями о хотя бы одном угле, мы можем запросто вычислить параметры и всех остальных. Так как боковые части трапеции равны друг другу, то как и в задаче, мы должны найти основание через один небольшой его фрагмент. Длина второго фрагмента будет точно совпадать с длиной первого. Делается это также через изображение высоты, образующей треугольник. Через параметры углов и одной стороны этого треугольника мы с легкостью получим искомую часть большего основания.Как найти меньшее основание равнобедренной трапецииЕсли нам известны параметры большего основания, боковых сторон, то это можно сделать так. На большее основание опускаем высоту и записываем две теоремы Пифагора. Одна будет отражать параметры треугольника, в котором в качестве гипотенузы выступает диагональ, в качестве одного катета – высота, а в качестве другого катета – большее основание без отрезка, отсеченного высотой.Вторая теорема должна быть актуальна для треугольника, который состоит из гипотенузы – боковой стороны, катета – высоты и катета – отрезка от большего основания.Составляем систему этих уравнений и решаем ее. Находим отрезок, отсеченный высотой от большего расстояния. Отнимаем удвоенные параметры этого отрезка от параметров большего основания и получаем длину меньшего основания.
2) Во втором случае дан равнобедренный треугольник. В нем угол А будет при основании, а значит он острый, поэтому тангенс угла будет числом положительным.
Теперь по теореме косинусов имеем (достаточно нарисовать, чтобы понять обозначения): BC² = AC² + AB² - 2*AC*AB*cosA
169 = 169 + 100 - 260*cosA
260*cosA = 100
cosA = 100/260 = 5/13
По основному тригонометрическому тождеству имеем:
sin²A + cos²A = 1
откуда sinA = √(1 - cos²A) = √(1 - (25/169)) = 12/13
И находим тангенс:
tgA = sinA/cosA = 12/13 ÷ 5/13 = 12/5 = 2,4