1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180° Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120° ------------------ 2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны. Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ. Треугольник ВСD равнобедренный, углы ВDС=СВD. Угол ВСD=180-60=120° Отсюда угол ВDС= СDВ= (180-60):2=30°. Углы АВD и АСD равны 120-30=90° Следовательно, треугольники АВD и ACD - прямоугольные. Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)
1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180°
Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120°
------------------
2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны.
Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ.
Треугольник ВСD равнобедренный, углы ВDС=СВD.
Угол ВСD=180-60=120°
Отсюда угол ВDС= СDВ= (180-60):2=30°.
Углы АВD и АСD равны 120-30=90°
Следовательно, треугольники АВD и ACD - прямоугольные.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.