ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
Дано:
AB = AC
угол BAK = 35°
BC = 10 см
ВК = KC
угол ABC = 55°
Найти:
ВК, угол KAC, угол BAC, угол AKB, угол ACB
ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
ответ: 5 см, 35°, 70°, 90°, 55°.
Напишите уравнение окружности, проходящей через точки
A (-3; 0) и B (0; 9), если известно, что центр окружности лежит на оси ординат.
Объяснение:
Если центр лежит на оси ординат, то координаты центра О(0 ;у₀).
Тогда уравнение окружности (x – х₀)²+ (y – у₀)² = R² примет вид :
(x – 0)²+ (y – у₀)² = R² или х ²+ (y – у₀)² = R² . Т.к. точки А и В принадлежат окружности, то координаты точек удовлетворяют уравнению окружности
Получили систему.
{ (-3)²+ (0 – у₀)² = R² ,{ 9+ у₀² = R²
|{ 0²+ (9 – у₀)² = R² ,|{ (9 – у₀)² = R², приравняем левые части
9+ у₀²= (9 – у₀)² → 9+ у₀²= 81 –18у₀+ у₀² , 18у₀=72 , у₀=4 .
Найдем R : 9+ 4² = R² , R²=25 , учитывая , что R>0 , получаем R=5.
Координаты центра О(0;4) , R=5 → x ²+ (y –4)² = 5²