Так как отрезки АС и BD пересекаются в точке D, точка D принадлежит обоим отрезкам.
Опустим перпендикуляр из вершины В на прямую АС.
Так как треугольник АВС равносторонний, высота из точки В на сторону АС разделит эту сторону пополам (в равностороннем треугольнике высота = медиана).
Опустим перпендикуляр из вершины D на прямую АС.
Так как треугольник АDС равнобедренный, высота из точки D на сторону АС разделит эту сторону пополам (в равнобедренном треугольнике высота = медиана).
Итак, основания обеих высот разделили сторону АС пополам, следовательно, они являются одной и той же точкой и принадлежит эта точка прямой BD. А так как эта точка принадлежит и прямой АС, следовательно, прямые АС и BD взаимно перпендикулярны. Что и требовалось доказать.
Объяснение:Трапеция АВСД, ВС=х, АД=2х, СД=АД/2=2х/2=х, уголД=60, АВ=6, проводим высоты ВН и СК на АД, треугольник КСД прямоугольный, КД=1/2СД=х/2, СК=СД*sin60=х*корень3/2=ВН, НВСК прямоугольник ВН=СК, ВС=НК=х, АН=АД-НК-КД=2х-х-х/2=х/2, треугольник АВН прямоугольный, АВ в квадрате=АН в квадрате+ВН в квадрате, 36=(х в квадрате/4)+(3*х в квадрате/4), 36=4*х в квадрате/4, х=6=СД, АВСД-равнобокая трапеция, АД=2*6=12, ВС=6, ВН=6*корень3/2=3*корень 3, площадь АВСД=1/2(ВС+АД)*ВН=1/2*(6+12)*3*корень 3=27*корень 3
Доказательство в объяснении.
Объяснение:
Так как отрезки АС и BD пересекаются в точке D, точка D принадлежит обоим отрезкам.
Опустим перпендикуляр из вершины В на прямую АС.
Так как треугольник АВС равносторонний, высота из точки В на сторону АС разделит эту сторону пополам (в равностороннем треугольнике высота = медиана).
Опустим перпендикуляр из вершины D на прямую АС.
Так как треугольник АDС равнобедренный, высота из точки D на сторону АС разделит эту сторону пополам (в равнобедренном треугольнике высота = медиана).
Итак, основания обеих высот разделили сторону АС пополам, следовательно, они являются одной и той же точкой и принадлежит эта точка прямой BD. А так как эта точка принадлежит и прямой АС, следовательно, прямые АС и BD взаимно перпендикулярны. Что и требовалось доказать.