Внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π ответ: 12π
1) Известно, что у вписанного в окружность четырехугольника сумма противоположных углов равна 180 градусов. Последовательно вычитаем из 180 21 и ли 49 и находим больший угол. 2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.
пусть K - точка касания маленькой окружности и описанной в условии фигуры;
ok ∩ mn = L
проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B.
OK ⊥ AB по св-у касательной
OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno)
таким образом ab || mn
значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними))
большая окружность - вневписанная для Δabc
=> cn = cm = полупериметру
пусть сторона abc = a
тогда cm = 1.5a
ca / cm = 2 / 3
mn по теореме косинусов из Δmon = 18√3
ab = 2 mn / 3 = 12√3 = a
осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3
S = p * r = a²√3 / 4
r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6
Длина окружности с радиусом 6 = 2π * 6 = 12π
ответ: 12π
Последовательно вычитаем из 180 21 и ли 49 и находим больший угол.
2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.