В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.