Обозначим М - точку середины стороны АС. Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна Найдём координаты точки М. хА = 0; хС = 0; хМ = (хС - хА)/2 = 0 уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2 ВМ - является медианой и, одновременно, высотой. Следовательно ВМ ⊥ АС, то есть отрезок ВМ горизонтален. Тогда ордината точки В равна ординате точки М: уВ = 2. Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4 Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3 Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3 ответ: В(2√3; 2) или В(-2√3; 2)
А) ∠АMN=90 °; ∠ACN= 90 °. Сумма противоположных углов четырехугольника СNMA равна 180 °, значит около четырехугольника CNMA можно описать окружность. ∠СMN=∠CAN как вписанные углы, опирающиеся на одну и ту же дугу NC. б) Так как точка М– середина гипотенузы является центром окружности, описанной около треугольника АВС, то ВM=AM=CM
Треугольник CMB – равнобедренный, так как СM=BM.
Треугольник ANB – равнобедренный, так как NM – серединный перпендикуляр к АВ, поэтому BN=AN.
Угол В в этих треугольниках общий.
По теореме синусов из треугольника АNB BN/sin∠B=2R1, R1– радиус окружности, описанной около треугольника ANB. По теореме синусов из треугольника СМВ: СM/sin ∠B=2R2 R2– радиус окружности, описанной около треугольника СМВ
Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна
Найдём координаты точки М.
хА = 0; хС = 0; хМ = (хС - хА)/2 = 0
уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2
ВМ - является медианой и, одновременно, высотой. Следовательно
ВМ ⊥ АС, то есть отрезок ВМ горизонтален.
Тогда ордината точки В равна ординате точки М: уВ = 2.
Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4
Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3
Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3
ответ: В(2√3; 2) или В(-2√3; 2)
∠АMN=90 °; ∠ACN= 90 °.
Сумма противоположных углов четырехугольника СNMA равна 180 °, значит около четырехугольника CNMA можно описать окружность.
∠СMN=∠CAN как вписанные углы, опирающиеся на одну и ту же дугу NC.
б)
Так как точка М– середина гипотенузы является центром окружности, описанной около треугольника АВС, то
ВM=AM=CM
Треугольник CMB – равнобедренный, так как СM=BM.
Треугольник ANB – равнобедренный, так как NM – серединный перпендикуляр к АВ, поэтому BN=AN.
Угол В в этих треугольниках общий.
По теореме синусов из треугольника АNB
BN/sin∠B=2R1, R1– радиус окружности, описанной около треугольника ANB.
По теореме синусов из треугольника СМВ:
СM/sin ∠B=2R2
R2– радиус окружности, описанной около треугольника СМВ
Значит
R1/R2=BN/CM, так как СМ=ВМ.
R1/R2=BN/BM
Рассмотрим прямоугольный треугольник ВNM:
cos∠B=BM/BN
R1/R2=1/cos∠B
По условию
tg∠A=4/3 ⇒ 1+tg2∠A=1/cos2∠A
значит
cos2∠A=1/(1+tg2∠A)=1/(1+(4/3)2)=9/25
так как угол А –острый, то cos∠A=3/5
sin∠A=4/5
sin∠A=cos∠B
R1/R2=1/cos∠B=1/(4/5)=5/4
О т в е т. 5/4