В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Gurza97
Gurza97
15.09.2020 16:21 •  Геометрия

Вычислите периметр стадиона для американского футбола изображённого на рисунке семь

Показать ответ
Ответ:
kovtunenkoone
kovtunenkoone
08.12.2021 06:22
Введение:
Для решения задачи о вписанных углах, нам необходимо сначала разобраться в основных определениях и свойствах описанной окружности, касательной и хорде.

Описание определений:
1. Касательная - это прямая, которая касается окружности в одной единственной точке.
2. Хорда - это отрезок прямой линии, соединяющий две точки окружности.
3. Угол между касательной и хордой - это угол, образованный в точке касания касательной и хорды.

Решение задачи:
Чтобы решить задачу о вписанных углах, нам понадобится использовать несколько свойств описанной окружности.

1. Свойство 1: Угол между касательной и хордой, образованный в точке касания, равен половине центрального угла, опирающегося на эту же дугу.

Это свойство означает, что если мы нарисуем центральный угол (угол, опирающийся на ту же дугу, что и угол между касательной и хордой), то угол между касательной и хордой будет равен половине этого центрального угла.

2. Свойство 2: Угол между касательной и хордой, образованный в точке касания, равен углу, образованному вписанным углом на той же дуге, что и образована хорда.

Это свойство означает, что углы между касательной и хордой, образованные в точке касания, равны друг другу и равны вписанному углу на той же дуге, что и образована хорда.

Пояснение:
Почему эти свойства верны?

1. Нам дана описанная окружность, поэтому мы можем использовать свойства треугольников, основанные на соотношении между центральными углами и углами, опирающимися на ту же дугу, чтобы доказать описанные выше свойства.

2. Также мы можем использовать свойства геометрии для доказательства этих свойств, например, свойства параллельных линий или свойства углов в треугольниках.

Шаги решения:

1. Найти центральный угол, опирающийся на ту же дугу, что и хорда.
2. Разделить значение этого центрального угла на 2, чтобы найти меру угла между касательной и хордой.

Пример решения:

Пусть у нас есть окружность с хордой AB. Касательная к окружности касается ее в точке T.

1. Нарисуем центральный угол, опирающийся на ту же дугу, что и хорда AB и обозначим его как угол BOC.

- Если у нас даны значения углов BOA и COA, мы можем найти меру угла BOC, используя свойство центральных углов.
- Если у нас даны значения длин дуги AB и длины окружности, мы можем найти меру угла BOC, используя свойство отношений длин дуг.

2. Разделим меру угла BOC на 2, чтобы найти меру угла между касательной и хордой - угол TOC.

- Если мы знаем меру угла BOC, то мера угла TOC будет равна половине меры угла BOC.

Таким образом, мы сможем найти значение угла между касательной и хордой с использованием свойств описанной окружности и пары известных значений углов или дуг.
0,0(0 оценок)
Ответ:
Shkolnik555777
Shkolnik555777
28.03.2022 10:48
Для того, чтобы определить, какие из приведённых утверждений являются истинными, давайте рассмотрим каждое утверждение по очереди и проведём необходимые рассуждения.

Утверждение 1: В подобных треугольниках отношение биссектрис, проведённых к сходственным сторонам, равно коэффициенту подобия.

Для проверки данного утверждения представим себе два подобных треугольника ABC и A'B'C' с соответствующими биссектрисами AD и A'D'. Давайте обозначим отрезки, ради которых проходят биссектрисы, как BD и B'D'. Затем рассмотрим отношение BD к AD и отношение B'D' к A'D'. Если эти отношения равны, то утверждение будет истинным.

Для доказательства равенства этих отношений, воспользуемся теоремой о биссектрисе:
В треугольнике ABC биссектриса AD делит сторону BC в отношении BD:DC, где BD и DC - отрезки, на которые биссектриса делит сторону BC. Аналогично, в треугольнике A'B'C' биссектриса A'D' делит сторону B'C' в отношении B'D':D'C'.

Поскольку треугольники ABC и A'B'C' являются подобными, соответствующие стороны имеют одно и то же отношение подобия, то есть отношение AB к A'B', отношение BC к B'C' и отношение AC к A'C' равны.

Тогда отношение BD к AD должно быть равно отношению B'D' к A'D', поскольку BD и B'D', AD и A'D' являются отрезками, на которые биссектрисы делат стороны BC и B'C'.

Таким образом, утверждение 1 является истинным.

Утверждение 2: Медиана прямоугольного треугольника, проведённая из вершины прямого угла, разбивает этот треугольник на два подобных треугольника.

Утверждение 2 не является истинным, так как медиана, проведённая из вершины прямого угла прямоугольного треугольника, делит его на два равных подтреугольника, а не на два подобных треугольника.

Таким образом, утверждение 2 является ложным.

Утверждение 3: Если прямая пересекает две стороны неравнобедренного треугольника и не параллельна третьей его стороне, то она может отсекать от него треугольник, подобный данному.

Для проверки данного утверждения нужно убедиться в том, что для любой прямой, которая пересекает две стороны неравнобедренного треугольника и не параллельна третьей стороне, можно отсекать треугольник, подобный данному.

Рассмотрим следующую ситуацию: пусть треугольник ABC является неравнобедренным и прямая DEF пересекает стороны AB и AC, но не является параллельной стороне BC. Для того чтобы отсечь треугольник, подобный данному, нам необходимо выбрать такую точку G на прямой DEF, чтобы точки D, E и G были соответственно сторонами предполагаемого треугольника. Тогда прямые GA, GB и GC должны быть параллельны сторонам треугольника ABC. Это возможно только в случае, если точки A, B и C лежат на одной прямой, то есть треугольник ABC тогда окажется вырожденным.

Таким образом, утверждение 3 является ложным.

Утверждение 4: Прямая, пересекающая две стороны равностороннего треугольника, отсекает от него треугольник, подобный данному.

Утверждение 4 является истинным.

Для проверки данного утверждения представим себе равносторонний треугольник ABC, и пусть прямая DE пересекает стороны AB и AC. Для отсечения треугольника, подобного данному, нам необходимо выбрать такую точку F на прямой DE, чтобы точки D, E и F были соответственно сторонами предполагаемого треугольника. Затем, мы найдём середины сторон треугольника ABC (назовём их M, N и P). Тогда прямые MF, NE и PD будут параллельны сторонам треугольника ABC, поскольку они проходят через середины соответствующих сторон.

Таким образом, утверждение 4 является истинным.

Утверждение 5: Любые два равносторонних треугольника подобны.

Утверждение 5 является истинным.

Два треугольника считаются подобными, если их соответствующие углы равны, и отношение длин любых двух их сторон равно. Равносторонний треугольник - это треугольник, у которого все три стороны равны, а значит он имеет три равных угла.

Таким образом, все равносторонние треугольники имеют три равных угла и отношение длин всех их сторон равно, поэтому они подобны друг другу.

Таким образом, утверждение 5 является истинным.

Итак, истинными являются утверждения 1, 4 и 5. Они доказаны выше с использованием соответствующих рассуждений и пошагового решения.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота