Медиана БД равнобедренного треугольника АБЦ, проведенная к основанию АЦ, так же есть его высота, тогда треугольник АБД прямоугольный, а АД = ЦД = АЦ / 2 = 16 / 2 = 8 см.
В прямоугольном треугольнике АБД, по теореме Пифагора, определим длину катета БД.
БД² = 388 – 64 = 324
БД = 18 см.
Медианы треугольника, в точке их пересечения делятся в отношении 2 / 1. БО = 2 * ОД.
Тогда ОД = БД / 3 = 18 / 3 = 6 см.
В прямоугольном треугольнике АОД, по теореме Пифагора, определим длину отрезка АО.
Во-первых, только равнобочную трапецию можно вписать в окружность, это значит, что боковые стороны трапеции равны, и углы при основании равны. 1) пусть дана трапеция abcd. пусть меньшее основание = а, большее основание = b. тогда (a+b)/2 = 6 см. 2) проведем диагональ bd и опустим высоты bh и ct. т.к. трапеция равнобочная, то ah = (b-a)/2, тогда dh = b - ( (b-a)/2 ) = (2b - b + a)/2 = (b+a)/2 = 6 см. 3) рассмотрим прямоугольный треуг-к hdb. tg(60 градусов) = bh/dh, bh = tg(60 гр)*dh = sqrt(3)*6 см, т.е. нашли высоту.
10 см
Объяснение:
Медиана БД равнобедренного треугольника АБЦ, проведенная к основанию АЦ, так же есть его высота, тогда треугольник АБД прямоугольный, а АД = ЦД = АЦ / 2 = 16 / 2 = 8 см.
В прямоугольном треугольнике АБД, по теореме Пифагора, определим длину катета БД.
БД² = 388 – 64 = 324
БД = 18 см.
Медианы треугольника, в точке их пересечения делятся в отношении 2 / 1. БО = 2 * ОД.
Тогда ОД = БД / 3 = 18 / 3 = 6 см.
В прямоугольном треугольнике АОД, по теореме Пифагора, определим длину отрезка АО.
АО² = АД² + ОД² = 64 +36 = 100.
АО = 10 см.
ответ: Длина отрезка АО равна 10 см.