Высота прямоугольного треугольника разделила исходный треугольник на два других маленьких прямоугольных треугольника. Сначала найдем на какие углы высота разбила прямой угол. Пусть меньший из них - х, тогда больший (х + 40). Получим уравнение: х + х + 40 = 90; 2х = 50; х = 25 - первая часть прямого угла; 25 + 40 = 65 - вторая часть. Т. о. в полученных прямоугольных треугольниках о острые углы равны 25 и 65, а вторые острые углы маленьких треугольников являются искомыми углами исходного треугольника: 25 и 65. ответ: 25 и 65.
Равновеликие фигуры — это такие фигуры, площади которых между собой равны.
Докажем, что S(ABCD) = S(EBCF).Доказательство :
Так как по условию ABCD — прямоугольник, то AB⊥ED.
Рассмотрим параллелограмм EBCF.
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно, S(EBCF) = АВ×EF.
EF = BC (по свойству параллелограмма).
Тогда также верно равенство S(EBCF) = АВ×ВС.
Рассмотрим прямоугольник ABCD.
Площадь прямоугольника равна произведению его смежных сторон.Следовательно, S(ABCD) = AB×BC.
Итак, так как правые части выражений равны, то мы можем приравнять из левые части. То есть мы получаем, что S(ABCD) = S(EBCF).
Что требовалось доказать.