а)Так как АВ = ВС , то треугольник АВС - равнобедренный, ВТ - высота, значит медиана и биссектриса. (хотя в дано почему то не прописано, про ВТ) Треугольник АВТ - прямоугольный. Против угла 30 градусов лежит катет в 2 раза меньше гипотенузы, значит АВ=ВС = 4*2=8 см.
Сумма двух сторон треугольника больше третьей стороны (неравенство треугольника), значит в из треугольника АВС АС < АВ + ВС AC < 16см
из треугольника АВТ АВ <АТ + ВТ или АТ>АВ - ВТ АТ > 4 см => АС > 8 см
8см < АС < 16 см
б)Если провести отрезок из точки Т к середине АВ (например точке М) то он разделит АВ на отрезки равные по 4 см. То есть треугольник МВТ - равнобедренный и углы М и Т равны. Найдем их М =Т = (180-В):2=(180-60);2=60 - Значит треугольник МВТ - равносторонний, значит ТМ = 4 см, Аналогично можно доказать что отрезок ТК (К - середина ВС) тоже 4 см. Значит их сумма равна 8 см.
Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2
а)Так как АВ = ВС , то треугольник АВС - равнобедренный, ВТ - высота, значит медиана и биссектриса. (хотя в дано почему то не прописано, про ВТ) Треугольник АВТ - прямоугольный. Против угла 30 градусов лежит катет в 2 раза меньше гипотенузы, значит АВ=ВС = 4*2=8 см.
Сумма двух сторон треугольника больше третьей стороны (неравенство треугольника), значит в из треугольника АВС АС < АВ + ВС AC < 16см
из треугольника АВТ АВ <АТ + ВТ или АТ>АВ - ВТ АТ > 4 см => АС > 8 см
8см < АС < 16 см
б)Если провести отрезок из точки Т к середине АВ (например точке М) то он разделит АВ на отрезки равные по 4 см. То есть треугольник МВТ - равнобедренный и углы М и Т равны. Найдем их М =Т = (180-В):2=(180-60);2=60 - Значит треугольник МВТ - равносторонний, значит ТМ = 4 см, Аналогично можно доказать что отрезок ТК (К - середина ВС) тоже 4 см. Значит их сумма равна 8 см.
Объяснение:
Доказательство:
1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них
АВ=СД (АВСД- пар-мм)
АЕ=СК ( по условию)
уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС
следовательно ВЕ=ДК
2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них
АД=СВ (АВСД- пар-мм)
АЕ=СК ( по условию)
уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС
следовательно ВК=ДЕ
3) ЕВКД - параллелограмм по признаку из пп. 1;2