Прямоугольник АВСД, треугольник АВД=треугольник АСД, АВ=СД, АД - общий (по двум катетам),АС=ВД, уголСАД=уголАСВ и уголАДВ=уголДВС как внутренние разносторонние. АД=ВС, треугольник АОД=треугольникВОС по стороне и прилежащим двум углам, АО=ОС=ВО=ОД, диагонали при пересечении делятся поополам Треугольники АОД= ВОС и АВО = СОД равнобедренные 2. треугольник АСД, уголСАД=30, АС=12, катетСД=1/2АС=12/2=6=АВ, уголВАС=уголАВС=90-30=60, уголАОВ=180-60-60=60, треугольник АОВ равносторонний, все углы 60, АВ=АО=ВО=6, периметр=6*3=18
Треугольник АВС с прямым углом А. АН - высота, опущенная из прямого угла на гипотенузу, которая делит прямоугольный треугольник на два подобных друг другу и исходному. Катет АВ = 10(дано), ВН - 8 (проекция этого катета на гипотенузу) Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10. Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм. По Пифагору АН = √(АВ²-ВН²) = 6дм. АС = √(АН²+НС²) = 7,5дм Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.
2. треугольник АСД, уголСАД=30, АС=12, катетСД=1/2АС=12/2=6=АВ, уголВАС=уголАВС=90-30=60, уголАОВ=180-60-60=60, треугольник АОВ равносторонний, все углы 60, АВ=АО=ВО=6, периметр=6*3=18
Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10.
Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм.
По Пифагору АН = √(АВ²-ВН²) = 6дм.
АС = √(АН²+НС²) = 7,5дм
Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S
после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.