Вычислите размер последовательных сторон параллелограмма, зная, что площадь равна 384 дм², что сумма двух высот составляет 28 дм и 3/4 одна из высот является другой. ответ должен быть 32дм, 24дм
Как известно количество вершин и сторон в любом многоугольнике совпадает, пускай в нашем случае их будет х,
дальше будем рассуждать следующим образом: чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2
по условию имеем соотношение (х*(х-3)/2)/х = 2,5 х² - 3х = 5х х² - 8х = 0 х = 0 либо х = 8 первый корень не удовлетворяет условию,значит х = 8 ответ: 8
Из площади трапеции ABCD найдем высоту трапеции CH
\displaystyle \tt S_{ABCD}=\frac{AD+BC}{2}\cdot CH~~~\Rightarrow~~~ CH=\frac{2S_{ABCD}}{AD+BC} =\frac{2\cdot84}{4+3}= 24S
ABCD
=
2
AD+BC
⋅CH ⇒ CH=
AD+BC
2S
ABCD
=
4+3
2⋅84
=24
Так как AD || MN и BC || MN, то CK ⊥ MN. Высота CK в два раза меньше высоты CH, т.е. CK = 24/2 = 12.
Средняя линия трапеции равна полусумме основания,т.е.
\tt MN=\dfrac{AD+BC}{2}=\dfrac{4+3}{2}=3.5MN=
2
AD+BC
=
2
4+3
=3.5
\tt S_{BCNM}=\dfrac{MN+BC}{2}\cdot CK =\dfrac{3.5+3}{2}\cdot12= 57S
BCNM
=
2
MN+BC
⋅CK=
2
3.5+3
⋅12=57 кв. ед.
ответ: 57 кв. ед..
дальше будем рассуждать следующим образом:
чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2
по условию имеем соотношение (х*(х-3)/2)/х = 2,5
х² - 3х = 5х
х² - 8х = 0
х = 0 либо х = 8
первый корень не удовлетворяет условию,значит х = 8
ответ: 8