Вычислите синус угла между наклонной АС и её проекцией, если длина перпендикуляра АВ, опущенного из точки А на плоскость равна 5 см, а длина наклонной 13.
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
<ABC=zACB(Т.к. углы при основании равнобедр. треуг.)=30° <BAC=180-30*2=120°
a)AB * AC = 8 * 8 * cos120 = 64 * (-cos60) 64 * (-) = -32
b) Т.к. DE соединяет середины двух сторон.значит,DE-средняя линия равнобедренного треугольника ABC → DE||BC и DE=0.5BC По теореме синусов:
BC AB
sin120 sin30
BC
AB * sin120
sin30
BC BC = 8√3 8* 2
DE=4√3 BC * DE = 8√3 * 4√3 * cos0 1 €96 - 32 * 3 *
с)Если отложить от одной точки вектора АВ и ВС,то образуется угол = 180-30=150°(Просто продолжаешь AB и находишь смежный угол)
AB* BC = = 8 * 8√3* cos150 = 64√/3* *
(- = -32 * 3 = -9