Определите, является ли отрезок AB диаметром окружности x²+6x+y²=0, если А(-1 ;√5) , В(-5 ;-√5).
Объяснение:
1) Преобразуем уравнение окружности (выделим полные квадраты, если это возможно) : x²+6x+y²=0 , x²+6x+9-9+y²=0,
(х+3)²+у²=9, (х+3)²+у²=3² . Центр имеет координаты О(-3 ;0) , r=3.
2) Если АВ-диаметр , то
для А(-1 ;√5) → (-1)²+6*(-1)+√5²=1-6+5=0, 0=0 , лежит на окружности;
для В(-5 ;-√5)→ (-5)²+6*(-5)+(-√5)²= 25-30+5=0, 0=0 ,
лежит на окружности;
Все условия выполнены, значит АВ-диаметр окружности x²+6x+y²=0.
Определите, является ли отрезок AB диаметром окружности x²+6x+y²=0, если А(-1 ;√5) , В(-5 ;-√5).
Объяснение:
1) Преобразуем уравнение окружности (выделим полные квадраты, если это возможно) : x²+6x+y²=0 , x²+6x+9-9+y²=0,
(х+3)²+у²=9, (х+3)²+у²=3² . Центр имеет координаты О(-3 ;0) , r=3.
2) Если АВ-диаметр , то
А и В принадлежат окружности ( координаты удовлетворяют уравнению окружности) :для А(-1 ;√5) → (-1)²+6*(-1)+√5²=1-6+5=0, 0=0 , лежит на окружности;
для В(-5 ;-√5)→ (-5)²+6*(-5)+(-√5)²= 25-30+5=0, 0=0 ,
лежит на окружности;
расстояние между А и О равно 3 : АО=√( (-3+1)²+(0+√5)²)=√( 4+5)=3Все условия выполнены, значит АВ-диаметр окружности x²+6x+y²=0.
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |