В квадрате АВСD точка К - середина стороны ВС, точка М - серидина стороны АВ. Докажите, что прямые АК и МД перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и МД) и АВК подобны. Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними. Угол CND=углу АМD, угол АDМ=NCD Сумма углов ADM и АМD равны 90 градусов. Рассмотрим треугольник DNO. Угол OND=CND, угол АDМ=NCD. И в сумме они дают 90 градусов. Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов. Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла. Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM 2AM/OD=AM/ON, значит OD=2ON Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6 Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5 Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5 Площадь квадрата Sк=(12√5)²=720 Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180 Площадь AMCD=720-180=540
Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними.
Угол CND=углу АМD, угол АDМ=NCD
Сумма углов ADM и АМD равны 90 градусов.
Рассмотрим треугольник DNO.
Угол OND=CND,
угол АDМ=NCD. И в сумме они дают 90 градусов.
Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов.
Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла.
Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND
т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM
2AM/OD=AM/ON, значит OD=2ON
Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6
Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5
Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5
Площадь квадрата Sк=(12√5)²=720
Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ
площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180
Площадь AMCD=720-180=540
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³