Подобные треугольники - треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Признаки: 1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. 2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. 3) Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.
7 см
Объяснение:
В любом треугольнике одна из сторон всегда меньше суммы двух других сторон.
1) Пусть основание АС треугольника АВС равно 7 см, а боковые стороны АВ = ВС = 3 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 3 + 3 = 6 см
Так как сумма длин двух сторон АВ и ВС меньше длины третьей стороны (6<7), то такой треугольник не существует.
2) Пусть основание АС треугольника АВС равно 3 см, а боковые стороны АВ = ВС = 7 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 7 + 7 = 14 см
Так как сумма длин двух сторон АВ и ВС больше длины третьей стороны (14>3), то такой треугольник существует.
Значит, третья сторона данного равнобедренного треугольника равна 7 см.
ответ: 7 см
Признаки:
1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
3) Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.
Если нужны доказательства - напиши.