Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
Сума углов, прилежащих к одной стороне параллелограмма равна 180° Если угол D - тупой, то угол C - острый. ∠С +∠D = 180° sin ∠C= sin (180°-∠D) = sin ∠D=4/5=0,8 синусы углов, прилежащих к одной стороне равны.
cos ²α+sin²α=1 ⇒ cos²α=1-sin²α значит cos²(∠C) = 1 - sin²(∠C)=1-0,8²=0,36 cos (∠C)=0, 6 ( так как угол С - острый, знак " +" перед 0,6) По теореме косинусов из треугольника BCD: BD²= BC²+CD²- 2·BC·CD·cos∠С 5²=ВС²+(√41)²-2 ВС·√41·0,6 Получили квадратное уравнение: ВС² - 1,2·√41 ·ВС +16 = 0 D=(1,2√41)² - 64<0 получилось, что треугольник не существует? Проверьте условие
Если угол D - тупой, то угол C - острый.
∠С +∠D = 180°
sin ∠C= sin (180°-∠D) = sin ∠D=4/5=0,8
синусы углов, прилежащих к одной стороне равны.
cos ²α+sin²α=1 ⇒ cos²α=1-sin²α
значит
cos²(∠C) = 1 - sin²(∠C)=1-0,8²=0,36
cos (∠C)=0, 6 ( так как угол С - острый, знак " +" перед 0,6)
По теореме косинусов из треугольника BCD:
BD²= BC²+CD²- 2·BC·CD·cos∠С
5²=ВС²+(√41)²-2 ВС·√41·0,6
Получили квадратное уравнение:
ВС² - 1,2·√41 ·ВС +16 = 0
D=(1,2√41)² - 64<0
получилось, что треугольник не существует?
Проверьте условие