Выполни
Прочитав текст «Почему Моде шаньюй говорил, что «Земля-
основа государства»? выполни задания
1 задание: ответьте на во Дайте характеристику политической истории гуннов
1. Какие сведения о гуннах приведены в историческом
источнике
2. Опишите историю образования государства гуннов.
3. Приведите 3 аргумента об усилении государства гунов при
правлении шаньюя Моде
Дескрипторы:
1. Дает характеристику историческим источникам о
гуннах.
2. Приводит факты о истории образования государства
гуннов.
3. Приводит 3 аргумента о усилении гуннов при шаньюе
Моде.
2 задание: Соотнесите термины с определениями.
Дескрипторы:
Определяет верное определение к понятию «шаньюй».
2. Определяет особенности политики шаньюя Моде.
3. Верно соотносит сведения о шаньюе Чжи-Чжи.
Определяет достижения Атиллы.
5. Верно соотносит сведения, касающиеся Прииска.
А) шаньюй Византийский посол, характеризовавший
гуннов как мирный народ.
Б)Моде
2.Титул правителя гуннов
В)Чжи-чжи 3.Первый правитель гуннов.
ГЕділ
4.Под руководством этого правителя гунны
(Атилла) начали свое переселение на Запад.
Д)Принск 5.Под руководством этого правителя гунны
захватили Румынию, Венгрию, земли
Римской империи Паннонию и Мезияну.
3 задание.На стр. 120 выполнить дополнительное задание :
«Написать характеристику Моде, используя приведенные
во Когда и в какой стране Жил исторический деятель?
2.К какому общественному слою он принадлежал?
3.Какие цели преследовал в своей деятельности?
4. Какиеми личными качествами обладал?
5.При каких средств добивался задуманного?
6.Как можно оценить его деятельность?
Почему Моде шаньюи говорил, что
«Земля-основа государства»?
В І тысячилетии до н.э. на территории от
южной Монголии до Каспийского региона
и Центральной Азии населяли
многочисленные кочевые племена. По
китайским источникам термин «ғун»
появился в 3 веке до н.э.. Правитель
гуннов носил титул «шаньюй». В
китайских источниках имеются такие
сведения огуннах: «Моде в борьбе за
власть одержал победу над собственным
отцом. Узнав о междоусобных войнах
восточные соседи решили объявить войну
гуннам. Соседнее с гуннами государство
Дунь Ху задумало отнять у них землю.
Отправив послов к Моде дважды, они
требовали от него царского коня и жены.
Моде сказав, что «И конь и жена-
милость моего народа» отдаст требуемое.
В третий раз они потребовали от Моде
клочок пустынной земли что лежала
между государствами. Тогда
возмущенный Моде ответил: «Я выполнил
два ваших условия отдал и лошадь и жену
так, как они были моими. Но земля хоть и
малопригодна, дана Тенгри и принадлежит
народу! Нет сомнений отдавать или нет,
земля — основа государства и отдать вам се
я не имею права!» Так началась война в
которой победили гунны и присоединили
себе земли государства Дунь Ху. Таким
образом Моде создал государство гуннов.
По сведениям востоковеда академика Л.Н.
Гумилева это событие произошло в 209
году до н.э..
А1 Если точка лежит в плоскости YOZ, то x=0;
ответ: а) A(0; 1; 1).
A2 Координаты середины отрезка равны полусумме координат концов отрезка:
x(М) = (x(A) + x(В))/2; ⇒ x(B)=2· x(M) - x(A);
x(B) = 2 · (- 2) - 1 = - 5
y(B) = 2 · 4 - 3 = 5
z(B) = 2 · 5 - (- 2) = 12
ответ: a) B(- 5; 5; 12).
A3 B(6; 3; 6) C(- 2; 5; 2)
Если АМ медиана, то M - середина ВС.
x(M) = (6 - 2)/2 = 2; y(M) = (3 + 5)/2 = 4; z(M) = (6 + 2)/2 = 4
M(2; 4; 4); A(1; 2; 3)
AM² = (2 - 1)² + (4 - 2)² + (4 - 3)² = 1 + 4 + 1 = 6;
AM = √6
ответ: а) √6
А4 Скалярное произведение равно сумме произведений соответствующих координат:
↑a · ↑b = 1 · (- 1) + (- 1) · 1 + 2 · 1 = - 1 - 1 + 2 = 0
ответ: б) 0.
А5 При симметрии относительно оси Ох меняют знак координаты у и z:
А(0; 1; 2) → A₁ (0; - 1; - 2),
B(3; - 1; 4) → B₁ (3; 1; - 4),
C(- 1; 0; - 2) → C₁ (- 1; 0; 2).
B1 Неполное условие. Должно быть так:
Диагональ осевого сечения цилиндра равна √81 см, а радиус основания – 3 см. Найти высоту цилиндра.
Осевое сечение цилиндра - прямоугольник, одна сторона которого (АВ) равна диаметру основания, а другая - образующая (она же высота).
Из прямоугольного треугольника АВВ₁ по теореме Пифагора:
ВВ₁ = √(АВ₁² - АВ²) = √(81 - 36) = √45 = 3√5 см
ответ: 3√5 см
B2 ΔSOA прямоугольный,
R = OA = SA · cos30° = 8 · cos30° = 8 √3/2 = 4√3 см
h = SO = SA · sin30° = 8 · 1/2 = 4 см
Sasb = 1/2 AB · SO = 1/2 · 2R · h = R · h = 4√3 · 4 = 16√3 см²
С1 Если призма вписана в шар, то ее основания вписаны в равные круги - параллельные сечения шара, а центр шара - точка О - лежит на середине отрезка КК₁, соединяющего центры этих кругов.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению. ОК перпендикулярен плоскости АВС. Тогда КК₁ - высота призмы.
ОА - радиус шара, ОА = 4 см,
КА - радиус сечения, или радиус окружности, описанной около правильного треугольника АВС (призма правильная), тогда
КА = а√3/3, где а - ребро осноавния,
КА = 6√3/3 = 2√3 см
Из прямоугольного треугольника АОК по теореме Пифагора:
ОК = √(ОА² - КА²) = √(4² - (2√3)²) = √(16 - 12) = √4 = 2 см
КК₁ = 2ОК = 4 см
ответ: 4 см
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.