Трапеция АВСД, у которой АД-нижнее основание, ВС- верхнее основание. Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД). В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12) Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26). Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13. Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5. В равнобедренной трапеции АД=ВС+2АН=ВС+10. Подставим это в АД+ВС=26, получаем ВС+10+ВС=26 ВС=16/2=8 АД=8+10=18 ответ: стороны 13, 8, 13, 18.
Дан треугольник, две стороны которого равны по 10 см, третья - 12 см. Этот треугольник равнобедренный. Обозначим его АВС, АВ=ВС. Проведем высоту ВН к основанию. Высота равнобедренного треугольника, проведенная к основанию, является его медианой. ⇒ АН=СН=6 см. По т.Пифагора ВН=√(АВ²-АН²)=√(100-36)=8 см. Высоты к боковым сторонам равнобедренного треугольника равны. Найдем их из площади ∆ АВС.
Ѕ(АВС)=АС•ВН:2=48 см² В то же время Ѕ(АВС)=СМ•АВ:2, поэтому СМ•10:2=48 см², откуда СМ=АК=96:10=9,6 см.
Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД).
В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12)
Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26).
Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13.
Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5.
В равнобедренной трапеции АД=ВС+2АН=ВС+10.
Подставим это в АД+ВС=26, получаем
ВС+10+ВС=26
ВС=16/2=8
АД=8+10=18
ответ: стороны 13, 8, 13, 18.
Дан треугольник, две стороны которого равны по 10 см, третья - 12 см. Этот треугольник равнобедренный. Обозначим его АВС, АВ=ВС. Проведем высоту ВН к основанию. Высота равнобедренного треугольника, проведенная к основанию, является его медианой. ⇒ АН=СН=6 см. По т.Пифагора ВН=√(АВ²-АН²)=√(100-36)=8 см. Высоты к боковым сторонам равнобедренного треугольника равны. Найдем их из площади ∆ АВС.
Ѕ(АВС)=АС•ВН:2=48 см² В то же время Ѕ(АВС)=СМ•АВ:2, поэтому СМ•10:2=48 см², откуда СМ=АК=96:10=9,6 см.