Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
пункт 2: т.к нам дана призма правильная то углы в ней по 90° => прямые проходящие через плоскость ABCD являются перпендикулярами, в треуг B1DB прямая BB1 перпендикуляр к плоскости => угол 90°
пункт 3: т.к треугольник прямоугольный, то по св-ву прямоугольного треугольника: напротив
угла в 30° лежит катет равный половине гипотенузы
пункт 4: используем косинус т.к BD катет прилежащий к гипотенузе, косинус это отношение прилежащего катета к гипотенузе, отсюда и выводим этот катет
пункт 5: т.к в основании правильная четырехугольная призма
пункт 6: т.к AB= AD и в основании квадрат, угол BAD=90°
Задачи на второй признак равенства треугольников
Треугольники
Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
Объяснение:
пункт 2: т.к нам дана призма правильная то углы в ней по 90° => прямые проходящие через плоскость ABCD являются перпендикулярами, в треуг B1DB прямая BB1 перпендикуляр к плоскости => угол 90°
пункт 3: т.к треугольник прямоугольный, то по св-ву прямоугольного треугольника: напротив
угла в 30° лежит катет равный половине гипотенузы
пункт 4: используем косинус т.к BD катет прилежащий к гипотенузе, косинус это отношение прилежащего катета к гипотенузе, отсюда и выводим этот катет
пункт 5: т.к в основании правильная четырехугольная призма
пункт 6: т.к AB= AD и в основании квадрат, угол BAD=90°