Если задать некую точку Е1, лежащую на середине стороны СD, и соединить точки Е и Е1 в отрезок, этот отрезок рассечёт параллелограмм на два конгруэнтные, равные по всем параметрам параллелограммы. И станет очевидно, что отрезок ЕD (как и отрезок Е1A для высеченного параллелограмма DAEE1) рассекает высеченный из параллелограмма АВСD параллелограмм ЕЕ1ВС на два равных по всем параметрам треугольника. ЕЕ1С и ЕСВ. Таким образом становится очевидно, что отрезок ЕС отсекает от параллелограмма АВСD ровно одну четверть. То есть, площать трапеции DAEC равна 3/4 от 60. 60:4×3=45 - площадь трапеции DAEC.
Треугольник АВС- прямоугольный, угол А=90гр. АС=9,ВС=15. По теореме Пифагора находим АВ. АВ^2=BC^2-AC^2=15^2-9^2=225-81=144.AB=12. a)sinB=AC\BC=9\15=0.6(т.к. sin острого угла прямоугольного треугольника называют отношение противолежащего катета(АС) к гипотенузе(ВС)) б)sinB=0.6, А sinC=AB\BC=12\15=0.8. sin^2B+sin^2C=0.6^2+0.8^2=0.36+0.64=1 в)tgB=AC\AB=9\12=0.75 (т.к. tg острого угла прямоугольного треугольника называется отношение противолежащего катета(АС) к прилежащему(АВ)) ctgB=AB\AC=12\9=1.33 => tgB+ctgB=0.75+1.33=2.08 г)(sinB+cosB)^2=(0.6+0.8)^2=1.4^2=1.96 (sinC+cosC)^2=(0.6+0.8)^2=1.4^2=1.96 Вроде так.
60:4×3=45 - площадь трапеции DAEC.
По теореме Пифагора находим АВ. АВ^2=BC^2-AC^2=15^2-9^2=225-81=144.AB=12.
a)sinB=AC\BC=9\15=0.6(т.к. sin острого угла прямоугольного треугольника называют отношение противолежащего катета(АС) к гипотенузе(ВС))
б)sinB=0.6, А sinC=AB\BC=12\15=0.8. sin^2B+sin^2C=0.6^2+0.8^2=0.36+0.64=1
в)tgB=AC\AB=9\12=0.75 (т.к. tg острого угла прямоугольного треугольника называется отношение противолежащего катета(АС) к прилежащему(АВ)) ctgB=AB\AC=12\9=1.33 => tgB+ctgB=0.75+1.33=2.08
г)(sinB+cosB)^2=(0.6+0.8)^2=1.4^2=1.96
(sinC+cosC)^2=(0.6+0.8)^2=1.4^2=1.96
Вроде так.