Дан прямоугольный ΔABC с прямым углом B. BO - медиана, проведенная из вершины прямого угла. Опишем около ΔABC окружность. Тогда гипотенуза AC будет являться диаметром окружности, так как вписанный угол ABC является прямым, то он опирается на диаметр окружности.
Медиана в треугольнике является отрезком, опущенным из вершины треугольника на середину противолежащей стороны. BO делит AC пополам. BO соединяет точку на окружности и центр окружности - тч.О, т.е. является радиусом окружности.
Отрезки BO = AO = OC - являются радиусами одной и той же окружности. ⇒ BO = AC/2.
Дан прямоугольный ΔABC с прямым углом B. BO - медиана, проведенная из вершины прямого угла. Опишем около ΔABC окружность. Тогда гипотенуза AC будет являться диаметром окружности, так как вписанный угол ABC является прямым, то он опирается на диаметр окружности.
Медиана в треугольнике является отрезком, опущенным из вершины треугольника на середину противолежащей стороны. BO делит AC пополам. BO соединяет точку на окружности и центр окружности - тч.О, т.е. является радиусом окружности.
Отрезки BO = AO = OC - являются радиусами одной и той же окружности. ⇒ BO = AC/2.
По условию составим систему уравнений и решим ее.
b + a = 15
b - a = 9
сложим уравнения: 2b = 24; b = 12; ⇒ a = 3. Основания трапеции 12 и 3.
В трапецию вписана окружность, значит суммы противоположных сторон равны. a + b = m + n = 15.
Трапеция равнобедренная. ⇒ m = n = 15/2 = 7,5
Диаметр вписанной окружности равен высоте трапеции D = h.
В прямоугольном треугольнике гипотенуза = m = 7,5; меньший катет = (b-a)/2 = 4,5; больший катет равен высоте трапеции и диаметру вписанной окружности.
По т. Пифагора: D = h = √(7,5² - 4,5²) = 6
Диаметр вписанной окружности = 6.