Выполняя задания, необходимо записать не только ответ, но и подробное решение. Задание 1 ( ).
Найти неизвестные тригонометрические функции угла, если ctg α = -√3, а угол α лежит во второй четверти.
Задание 2.
https://static-interneturok.cdnvideo.ru/114e0a4b-56e7-4c5f-bdd9-8241988dc458?1594994549
Точка O – центр окружности, описанной вокруг равнобедренного треугольника ABC с основанием AB. KA – касательная к данной окружности в точке А. KB∥AC. Перерисуйте рисунок и докажите, что:
а) ∠ACB=∠KAB; ( )
б) ∆KAB – равнобедренный; ( )
в) отношение площадей треугольников ACB и KAB не зависит от линейных размеров сторон треугольников, а определяется только величиной ∠ACB. ( )
Задание 3.
В треугольнике ABC проведена биссектриса BK. ∠BAC=20°; ∠BCA=60°; AK=3 см. Выполните рисунок и найдите следующие элементы:
длину биссектрисы BK; ( )
длину наибольшей стороны треугольника. ( )
5+2 = 7
Объяснение:
Задача на теорему Фалеса.
Обозначим пересечение BM и АС как точку О. Так как углы АОМ и ВОЕ - вертикальные, они равны.
Следовательно, в треугольнике ВОЕ углы при основании равны, делаем вывод, что он равнобедренный, из чего следует, что ВЕ = ВО = 5.
Далее, собственно, для нахождения длины медианы ВМ, нам остается найти длину отрезка ОМ и прибавить её значение к 5.
Теперь, как показано на рисунке, проведем через точку М прямую, параллельную АЕ. Теперь по теореме Фалеса получается, что, так как наша новая прямая делит и параллельная ей прямая АЕ делят сторону угла С (то есть АС), на равные отрезки, то и вторую его сторону (то есть ВС), они тоже будут делить на равные отрезки, следовательно,
ЕN = CN = 4/2 = 2.
Далее, так как углы ВОЕ и ВМN, а также углы BEO и BNM попарно соответственные, все они равны. А углы МОЕ и СЕО являются смежными с равными углами, следовательно, и они равны. Таким образом у нас получается равнобедренная трапеция МОЕN, в которой боковые стороны ОМ и EN равны.
Таким образом, ОМ = 2, а искомая сторона ВМ = 5 +2 = 7.
В этом тетраэдре грани ABD=CBD по двум катетам (АВ=СВ по условию, DB-общий, а угол В у них прямой).
Строим сечение. Точка Е-середина ребра DB. Сечение проходит параллельно плоскости ADC. Канты AD и CD принадлежат этой плоскости, значит сечение будет параллельно этим кантам. Возьмем грань CBD. Прямая, по которой будет проходить сечение, параллельна CD и проходит через середину DB (точку Е), будет средней линией для треуг. CBD. Значит на середине канта СВ отмечаем точку К и проводим прямую ЕК. Аналогично для грани ABD. Точка М - середина канта АВ. МЕК - искомое сечение. МЕК - равнобедренный треуг. МЕ=ЕК. МК - средняя линия для треуг. АВС. МК=АС/2=12/2=6
ЕК=√(КВ^2+EB^2), КВ=ВС/2=8/2=4, ЕВ=DB/2=6/2=3.
ЕК=√(16+9)=5, МЕ=ЕК=5, МК=6.
В треуг. МЕК проведем высоту ЕО (она же и медиана).
МО=ОК=МК/2=6/2=3
ЕО=√(25-9)=4
S(сечения МЕК)=1/2*ЕО*ОК=1/2*4*3=6
ответ: 6