Выпуклый четырехугольник ABCD вписан в окружность. При этом величины углов ABC и BCD соответственно равны 70°и 120°. Тогда величина угла BAD равна: а) 110 б) 180 в) 60 г) 120
Пусть D(1) - диаметр окружности, величина которого равна 4 см; D(2) - диаметр окружности, величина которого равна 16 см; r(1) - радиус окружности, с диаметром D(1); r(2) - радиус окружности, с диаметром D(2).
D(1) = r(1) * 2 = 4 см ⇒ r(1) = D(1)/2 = 4/2 = 2 см.
D(2) = r(2) * 2 = 16 см ⇒ r(2) = D(2)/2 = 16/2 = 8 см.
На рисунке изображено внешнее касание окружностей и можно увидеть, что расстояние между центрами окружностей равно сумме их радиусов.
В зависимости от расположения углов на прямой k может быть два верных варианта ответа: 3) и 1).
1. Углы α и β не являются соответственными. Соответственным для α будет угол, смежный к β (γ). Так как смежные углы в сумме составляют 180º, γ = 180 - 135 = 45º, т.е. равен углу α. Так как прямые считаются параллельными, если их соответственные углы равны, то верен вариант ответа 3).
2. Углы α и β - соответственные. Угол γ, смежный β, равен 45º = α. Если совместить прямые n и k, они образуют угол, в сумме с γ и α составляющий развернутый (180º). Т.е. угол между n и k равен 180 - 45 - 45 = 90º. Значит, эти прямые перпендикулярны и верен вариант ответа 1).
ответ: 10 см.
Объяснение:
Пусть D(1) - диаметр окружности, величина которого равна 4 см; D(2) - диаметр окружности, величина которого равна 16 см; r(1) - радиус окружности, с диаметром D(1); r(2) - радиус окружности, с диаметром D(2).
D(1) = r(1) * 2 = 4 см ⇒ r(1) = D(1)/2 = 4/2 = 2 см.
D(2) = r(2) * 2 = 16 см ⇒ r(2) = D(2)/2 = 16/2 = 8 см.
На рисунке изображено внешнее касание окружностей и можно увидеть, что расстояние между центрами окружностей равно сумме их радиусов.
Пусть d - расстояние между центрами окружностей.
⇒ d = r(1) + r(2) = 2 + 8 = 10 см.
Прямая k для прямых n и m является секущей.
В зависимости от расположения углов на прямой k может быть два верных варианта ответа: 3) и 1).
1. Углы α и β не являются соответственными. Соответственным для α будет угол, смежный к β (γ). Так как смежные углы в сумме составляют 180º, γ = 180 - 135 = 45º, т.е. равен углу α. Так как прямые считаются параллельными, если их соответственные углы равны, то верен вариант ответа 3).
2. Углы α и β - соответственные. Угол γ, смежный β, равен 45º = α. Если совместить прямые n и k, они образуют угол, в сумме с γ и α составляющий развернутый (180º). Т.е. угол между n и k равен 180 - 45 - 45 = 90º. Значит, эти прямые перпендикулярны и верен вариант ответа 1).
Объяснение:
сверху