Высота архитектурного сооружения "Байтерек" самой главной и узнаваемой достопримечательности столицы Казахстана 97м. Вычислите длины ВС, АС, если ВС= АВ, АО=ОС, угол ВОС=углу ВОА=90°, угол ВСО=30°, угол АОС=60°
3. Рассмотрим ∠5 и ∠4, т.к. BC║AD (по усл), то ∠5 и ∠4 внутренние накрест лежащие углы ⇒ ∠5 = ∠4 и, исходя из предыдущего пункта 2, получаем: ∠3 = ∠5 = ∠4
4. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°, т.е. ∠C + ∠D = 180° ⇒ ∠5 + ∠2 + ∠1 = 180°, но из пункта 1: ∠2 = ∠1, поэтому запишем так: ∠5 + 2 *∠2 = 180°
5. С другой стороны, т.к. ABCD - равнобедренная, то ∠A = ∠D, т.е. ∠3 + ∠4 = ∠1, но, исходя из пункта 1: ∠2 = ∠1, получаем: ∠3 + ∠4 = ∠2. А, исходя из пункта 3: ∠3 = ∠5 = ∠4 ⇒ 2 * ∠5 = ∠2
6. Подставим полученное в пункте 5 значение ∠2 в выражение из пункта 4: ∠5 + 2 *∠2 = 180° ∠5 + 2 *2 * ∠5 = 180° 5 * ∠5 = 180° ⇒ ∠5 = 180°/5 = 36°
Рассмотрим треуг-ик АВС. Он равнобедренный по условию, значит, углы при его основании АС равны: <BAC=<BCA. Пусть эти углы будут х.<BAC=<BCA=х <BCA=<CAE как накрест лежащие углы при пересечении двух параллельных прямых АЕ и ВС секущей АС. Но <BCA=<BAC, значит <BAC=<CAE=x <B=180-(<BAC+<BCA)=180-2x В равнобедренной трапеции <B=<C=180-2x. Рассмотрим треуг-ик ЕАС. Здесь <CAE=x, а углы ЕСА и Е при основании СЕ должны быть равны, т.к. ЕАС - равнобедренный по условию треугольник. Выразим, чему равен угол ЕСА: <ECA=<E=<C-<BCA=(180-2x)-x=180-3x Также угол Е в равнобедренной трапеции должен быть равен углу А, т.е. <E=x+x=2x Видим, что <E=180-3x и <E=2x. Т.е. 180-3х=2х 180=5х х=36 <A=<E=2*36=72 <B=<C=180-2*36=108
Дано: ABCD - трапеция, BC║AD, AB=BC=CD, AC - диагональ, AC=AD
Найти: ∠A, ∠B, ∠C, ∠D
Решение:
Обозначения: ∠1 = ∠CDA, ∠2 = ACD, ∠3 = ∠BAC, ∠4 = CAD, ∠5 = ∠BCA
1. Рассмотрим ΔACD: AC=AD (по усл)⇒ ΔACD - равнобедренный ⇒ ∠2 = ∠1
2. Рассмотрим ΔABC: AB=BC (по усл)⇒ ΔABC - равнобедренный ⇒ ∠3 = ∠5
3. Рассмотрим ∠5 и ∠4, т.к. BC║AD (по усл), то ∠5 и ∠4 внутренние накрест лежащие углы ⇒ ∠5 = ∠4 и, исходя из предыдущего пункта 2, получаем: ∠3 = ∠5 = ∠4
4. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°, т.е. ∠C + ∠D = 180° ⇒ ∠5 + ∠2 + ∠1 = 180°, но из пункта 1: ∠2 = ∠1, поэтому запишем так: ∠5 + 2 *∠2 = 180°
5. С другой стороны, т.к. ABCD - равнобедренная, то ∠A = ∠D, т.е. ∠3 + ∠4 = ∠1, но, исходя из пункта 1: ∠2 = ∠1, получаем: ∠3 + ∠4 = ∠2. А, исходя из пункта 3: ∠3 = ∠5 = ∠4 ⇒ 2 * ∠5 = ∠2
6. Подставим полученное в пункте 5 значение ∠2 в выражение из пункта 4:
∠5 + 2 *∠2 = 180°
∠5 + 2 *2 * ∠5 = 180°
5 * ∠5 = 180° ⇒ ∠5 = 180°/5 = 36°
7. Исходя из пункта 3: ∠3 = ∠5 = ∠4 ⇒ ∠3 = ∠5 = ∠4 = 36°, т.е. ∠A = ∠D = ∠3 + ∠4 = 36° + 36° = 72°
8. ∠B = ∠C = ∠5 + ∠2 = 36°+72° = 108°
ответ: ∠A = ∠D = 72°, ∠B = ∠C = 108°
<BAC=<BCA.
Пусть эти углы будут х.<BAC=<BCA=х
<BCA=<CAE как накрест лежащие углы при пересечении двух параллельных прямых АЕ и ВС секущей АС. Но <BCA=<BAC, значит <BAC=<CAE=x
<B=180-(<BAC+<BCA)=180-2x
В равнобедренной трапеции <B=<C=180-2x.
Рассмотрим треуг-ик ЕАС. Здесь <CAE=x, а углы ЕСА и Е при основании СЕ должны быть равны, т.к. ЕАС - равнобедренный по условию треугольник. Выразим, чему равен угол ЕСА:
<ECA=<E=<C-<BCA=(180-2x)-x=180-3x
Также угол Е в равнобедренной трапеции должен быть равен углу А, т.е. <E=x+x=2x
Видим, что <E=180-3x и <E=2x. Т.е.
180-3х=2х
180=5х
х=36
<A=<E=2*36=72
<B=<C=180-2*36=108