Опустим высоту ВН на сторону АD параллелограмма АВСD, тогда образуется прямоугольный ∆ АВН, в котором острый угол А = 45°, а значит, острый угол В в нем (АВН) = 90° - 45° = 45° (по теореме о сумме острых углов прямоугольного ∆). Т.к. 2 угла ∆ АВН равны, то он р/б, а именно: |АН| = |ВН|. Получается, что ∆ АВН - прямоугольный и р/б, тогда по теореме Пифагора |АВ|² = |АН|² + |ВН|², а значит, (7√2)² = 2|АВ|², то есть 49*2 = 2|АВ|². Получаем, что 49 = |АВ|², а значит, |АВ| = √49 = 7, т.к. корень арифметический (длина > 0). А т.к. |ВН| = |АВ| = 7, то |ВН| = 7. ответ: 7.
Дано: АВСD - трапеция, ВD⊥АВ, АС⊥СD, ВС=10 см, АD=26 см.
Доказать, что АВ=СD. Найти S(АВСD).
По условию ∠АВD=∠АСD=90°; значит, эти углы опираются на диаметр АD окружности, которую можно описать вокруг трапеции АВСD. Поскольку окружность можно описать только вокруг равнобедренной трапеции, то трапеция АВСD - равнобедренная.
Чтобы найти площадь трапеции, проведем высоты ВН и СК. Тогда
ВС=КН=10 см, АН=КD=(26-10):2=8 см.
Найдем СК из ΔАСD, где СК=√(АК*КD)=√((10+8)*8)=√144=12 см.
216 см²
Объяснение:
Дано: АВСD - трапеция, ВD⊥АВ, АС⊥СD, ВС=10 см, АD=26 см.
Доказать, что АВ=СD. Найти S(АВСD).
По условию ∠АВD=∠АСD=90°; значит, эти углы опираются на диаметр АD окружности, которую можно описать вокруг трапеции АВСD. Поскольку окружность можно описать только вокруг равнобедренной трапеции, то трапеция АВСD - равнобедренная.
Чтобы найти площадь трапеции, проведем высоты ВН и СК. Тогда
ВС=КН=10 см, АН=КD=(26-10):2=8 см.
Найдем СК из ΔАСD, где СК=√(АК*КD)=√((10+8)*8)=√144=12 см.
S=(ВС+АD):2*СК=36:2*12=216 см²