1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.
Дана правильная шестиугольная пирамида со стороной основания а = 10 см.
Длина отрезка, соединяющего вершину пирамиды с центром основания (а это высота пирамиды Н), равна √69 .
Найти: a) боковое ребро L и апофему A;
Проекция бокового ребра на основание равна радиусу описанной окружности и равна стороне основания.
L = √(69 + 100) = √169 = 13.
A = √(169 - (10/2)²) = √(169 - 25) = √144 = 12.
б) боковую поверхность: Sбок = (1/2)РА = (1/2)*6*10*12 = 360 кв.ед.
в) полную поверхность пирамиды.
Sосн = 3√3*100/2 = 150√3 кв.ед.
S = So + Sбок = (150√3 + 360) кв.ед.
1)120°
2)65°
3)60°
4)"="
Объяснение:
1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.