Высота BD равнобедренного треугольника ABC(AB=BC) делит его биссектрису AE на два отрезка, длины которых относятся как 23:13. Найти площадь треугольника ABC, если известно, что BD=12 см.
Пусть О — точка пересечения высоты BD и биссектрисы AE.
AO : OE = 23 : 13, BD = 12 см. По теореме Менелая для треугольника АЕС имеем . Поскольку треугольник ABC равнобедренный, то BD является биссектрисой и медианой, т.е. AD = DC, тогда (1).
По свойству биссектрисы: .
По теореме Пифагора из прямоугольного треугольника BDC:
Подставляем в равенство (1), получим уравнение относительно АС.
Решаете как иррациональное уравнение, возводите два раза обе части уравнения и вы должны придти к биквадратному уравнению , получите см.
Пусть О — точка пересечения высоты BD и биссектрисы AE.
AO : OE = 23 : 13, BD = 12 см. По теореме Менелая для треугольника АЕС имеем . Поскольку треугольник ABC равнобедренный, то BD является биссектрисой и медианой, т.е. AD = DC, тогда (1).
По свойству биссектрисы: .
По теореме Пифагора из прямоугольного треугольника BDC:
Подставляем в равенство (1), получим уравнение относительно АС.
Решаете как иррациональное уравнение, возводите два раза обе части уравнения и вы должны придти к биквадратному уравнению , получите см.
Площадь треугольника: см²
ответ: 60 см².