В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
hellppp1
hellppp1
24.01.2023 00:43 •  Геометрия

Высота цилиндра 8 м,а радиус 1,5 м.к цилиндру проведена касательная плоскость,проходящая через образующую ас.найдите расстояние от середины отрезка ас до точки.в осевого сечения,лежащей на окружности одного из оснований.(рисунок обязателен)

Показать ответ
Ответ:
adadov12345
adadov12345
26.01.2024 10:33
Добрый день! Я буду играть роль вашего школьного учителя и помогу вам решить эту задачу.

Для начала нарисуем схему, чтобы лучше понять условие задачи. Предлагаю представить цилиндр в виде двух концентрических окружностей, соединенных вертикальными отрезками. При этом нарисуем касательную плоскость, которая пересекает образующую цилиндра.

```
цилиндр касательная плоскость
----------------- |--------------------------
| | | |
| | | |
| | | |
| | aс | |
| |<------|----середина------------|
| | | |
| | | |
|-----------------| |-----------------------|

```

Здесь образующая цилиндра обозначена буквой "с", а середина отрезка ас обозначена, как "середина".

Теперь приступим к решению задачи.

У нас есть информация о высоте цилиндра (h = 8 м) и радиусе цилиндра (r = 1,5 м).

Мы хотим найти расстояние от середины отрезка ас до точки в осевом сечении, лежащей на окружности одного из оснований цилиндра.

Вспомним, что в цилиндре все горизонтальные сечения оснований являются концентрическими окружностями. Значит, середина отрезка ас будет находиться на окружности одного из оснований.

Чтобы найти расстояние от середины отрезка ас до точки в осевом сечении, лежащей на окружности одного из оснований, нам нужно найти радиус этой окружности.

Так как дана информация о радиусе основания цилиндра (r = 1,5 м), мы можем сделать вывод, что радиус окружности основания и радиус окружности в сечении равны друг другу.

Теперь осталось найти радиус окружности в сечении. Мы знаем, что высота цилиндра делит его на две равные части и что середина отрезка ас лежит на этой высоте.

Так как цилиндр делится пополам, то половина высоты равна 8 : 2 = 4 м.

Для нахождения радиуса окружности в сечении можно воспользоваться теоремой Пифагора. По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы. В нашем случае, катетами являются половина высоты (4 м) и радиус основания (1,5 м), а гипотенузой будет искомый радиус.

Итак, по теореме Пифагора:

(4 м)² + (1,5 м)² = радиус²

16 м² + 2,25 м² = радиус²

18,25 м² = радиус²

Теперь найдем квадратный корень из обеих частей уравнения:

радиус = √18,25 м ≈ 4,27 м

Итак, радиус окружности в сечении цилиндра (или радиус окружности основания) составляет примерно 4,27 метра.

Округлим полученное значение до двух значащих цифр после запятой.

Таким образом, расстояние от середины отрезка ас до точки в осевом сечении, лежащей на окружности одного из оснований цилиндра, составляет примерно 4,27 метра.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота