Высота цилиндра равна 11 см радиус равен 5 см. Найдите площадь сечения цилиндра плоскостью, параллельной его оси если расстояние между этой плоскости и осью цилиндра равно 3 см. (желательно с подробным решением)
Параллельность прямых - признаки и условия параллельности.
Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.
Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.
Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.
Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.
Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны
Пусть дана окружность радиуса R с центром в точке О и внутри её точка N. Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка N. ОА и ОВ - это радиусы. Проведём отрезок ОN, равный расстоянию d от центра до точки N. Из центра опустим перпендикуляр Оh на сторону АВ. По условию задания АN:ВN = 3:4. Примем коэффициент пропорциональности за х. Тогда АN = 3х, а ВN = 4х. Перпендикуляр Оh делит АВ пополам. Составляем уравнения из треугольников ONA и ОhN. Оh² = R²-(3.5x)² = R²-12,25x². Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x² = d²-0,25x². Приведём подобные: 12x² = R²-d². Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3. Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = √(3(R²-d²))/2. Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
ответ: от отрезка ON откладываем найденный угол AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.
Объяснение:
Параллельность прямых - признаки и условия параллельности.
Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.
Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.
Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.
Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.
Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания АN:ВN = 3:4. Примем коэффициент пропорциональности за х.
Тогда АN = 3х, а ВN = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и ОhN.
Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x² = d²-0,25x².
Приведём подобные: 12x² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = √(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
ответ: от отрезка ON откладываем найденный угол AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.