Высота конуса равна 6 см, угол при вершине осеm вого сечения равен 120°. найдите: а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 30°; б) площадь боковой поm верхности конуса.
Треугольник, полученный осевым сечением - равнобедренный (образующие равны). Высота является биссектрисой угла между образующими (120°/2=60°) и делит треугольник на два прямоугольных с углами 30°, 60°, 90°, в которых высота - катет против угла 30°, радиус вращения - катет против угла 60°, образующая - гипотенуза.
Образующая равна l=6*2=12 см
Радиус вращения равен r=6√3 см
a) Площадь треугольника по двум сторонам (образующие) и углу между ними: S=12^2 *sin(30°)/2 =36 (см^2)
б) Площадь боковой поверхности конуса: S бок= пrl =12*6√3*п =72√3*п (см^2)
Треугольник с углами 30°, 60°, 90°: стороны равны a, a√3, 2a.
Образующая равна
l=6*2=12 см
Радиус вращения равен
r=6√3 см
a) Площадь треугольника по двум сторонам (образующие) и углу между ними:
S=12^2 *sin(30°)/2 =36 (см^2)
б) Площадь боковой поверхности конуса:
S бок= пrl =12*6√3*п =72√3*п (см^2)
Треугольник с углами 30°, 60°, 90°: стороны равны a, a√3, 2a.